
Article

EPB: Urban Analytics and City Science
2023, Vol. 50(9) 2470–2490
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/23998083231158370
journals.sagepub.com/home/epb

Quantifying the environmental
characteristics influencing the
attractiveness of commercial
agglomerations with big
geo-data

Zhou Huang and Ganmin Yin

Institute of Remote Sensing and Geographical Information Systems, Peking University, China

Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, China

Xia Peng
Tourism College, Beijing Union University, China

Xiao Zhou and Quanhua Dong
Institute of Remote Sensing and Geographical Information Systems, Peking University, China

Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, China

Abstract
Understanding the attractiveness of commercial agglomerations contributes to urban planning.
Existing studies focus less on commercial agglomerations, and most directly use environmental
supply factors to characterize attractiveness. This study measures attractiveness from the per-
spective of human demand. Specifically, we build a novel bipartite graph based on big geo-data of
human mobility, using node centralities (degree, betweenness, and pagerank) to measure at-
tractiveness. Next, we summarize multisource environmental features such as Point-of-Interests
(POIs), land cover, transportation, and population, and use them as inputs to accurately predict
attractiveness based on random forest. Finally, the spatial heterogeneity of the effects of these
environmental variables on attractiveness is analyzed by multiscale geographically weighted re-
gression. The results of the Beijing case show that: (1) All three centralities show a trend that the
urban center is higher than the surrounding area, and betweenness is more reasonable. (2) Random
forest can accurately predict attractiveness, with R2 for degree, betweenness, and pagerank at 0.903,
0.846, and 0.760, respectively. (3) The number of shopping POIs, the length of main roads, and the
number of bus stops positively affect attractiveness, while the effects of greening ratio and pop-
ulation density are bidirectional. As for the service scope, about 70% of commercial agglomerations
have an average service radius of less than 15 km, which is significantly correlated with the Voronoi
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diagram. Our results can inspire understanding the human–environment relationship and guide
urban policymakers in business planning.

Keywords
Urban planning, commercial agglomeration attractiveness, bipartite graph centrality, supply and
demand, human–environment relationship, big geo-data

Introduction

As an important element of the built environment, a shop refers to a functional place that sells goods
or services to provide residents with shopping, dining, entertainment, and other living needs. This
supply–demand interplay is the embodiment of the coupling relationship between human and the
built-up environment. In many cases, the shops in the city do not exist alone, but show a clustering
effect, forming a series of commercial agglomerations, thereby enhancing the city’s economic
vitality (Bettencourt et al., 2007; Gomez-Lievano et al., 2016). Compared to the concept of the
trading area (Huff, 1964), the commercial agglomeration in this study focuses only on its infra-
structure part and does not consider the scope of services. Commercial agglomeration is a geo-
graphical object on a mesoscopic scale between a shop and a city (Hall, 2014; Dong et al., 2020), the
latter two are more studied, and the former is less involved (Ballantyne et al., 2022; Seong et al.,
2022; Yang et al., 2019), which is still a relatively research gap.

Understanding the attractiveness of commercial agglomerations can help us better carry out
business planning and urban design. So far, much work has studied attractiveness at the city and
shop levels, with relatively little consideration given to the scale of commercial agglomerations
(Estiri et al., 2021; Kunc et al., 2016; Romao et al., 2018; Sobolevsky et al., 2015). In addition, there
are two main ways to portray business attractiveness in the existing studies: (1) interviews and
questionnaires (González-Hernández and Orozco-Gómez, 2012; Wong et al., 2001), which require
surveyed customers to have strong imaginary ability and high shopping involvement, and have
disadvantages like subjectivity, labor-intensive and coarse-resolution; (2) the combination of en-
vironmental variables (such as commodity diversity, environmental comfort, transportation con-
venience, population congestion) as input to calculate the probability that a customer from an origin
will travel to different destinations. They can be roughly divided into three categories (Kunc et al.,
2016; Teller and Reutterer, 2008): spatial interaction models, such as the Huff model (Huff, 1964;
Liang et al., 2020) and the competing destinations models (De Mello-Sampayo, 2017;
Fotheringham, 1983; Ishikawa, 1987), random utility models (Grashuis et al., 2020; Oppewal et al.,
1997), and multiplicative competitive interaction (MCI) models (Cooper and Nakanishi, 1989; Wu
et al., 2019). These environmental factors do reflect attractiveness to some extent, that is, there is an
“environment-attractiveness” mapping relationship, but there is little work to deeply explore more
details of the mapping relationship, such as “to what extent” and “how to reflect.”

With the development of positioning technology, location-aware devices, and mobile internet,
big geo-data containing individual movement information is constantly generated and stored. These
big geo-data include mobile phone positioning data, smart card data, taxi trajectory data, etc (Bao
et al., 2021; Wang et al., 2022). Compared with traditional questionnaires, big geo-data has the
advantages of wide-coverage, low-cost, high-resolution and has been widely used in human
mobility, traffic optimization, urban planning (Chen et al., 2018; Liu et al., 2015; Wang et al., 2020,
2022; Yin et al., 2022), which also provides us with a new perspective for studying the attractiveness
of commercial agglomerations. The most intuitive way to measure the attractiveness of a thing is to
see how people react to it. For example, the number of people who buy can represent the
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attractiveness of goods, because people do “vote with their feet.” Big geo-data can objectively and
quantitatively reflect human demand (Giglio et al., 2019; Liu et al., 2015; Wang et al., 2021).
Compared with the above environmental supply, it is a more reasonable way to characterize at-
tractiveness, and studying this supply–demand relationship is also helpful in understanding the
human–environment relationship.

Batty (2013) systematically explores the application of bipartite graphs in urban studies, which
are widely used in business analysis, transportation modeling, and urban management (Chakraborty
et al., 2019; Eubank et al., 2004; Von Ferber et al., 2009). Bipartite graphs can model two types of
entities and their relationships, such as user-item, road-intersection, and people-place (Asratian
et al., 1998). Considering the characteristics of the Origin-Destination (OD) dataset used, if the
source grids (Origin) analogous users, the commercial agglomerations (Destination) analogous
items, with the OD flow between them as the links, we can establish a “source grid-commercial
agglomeration” bipartite graph, which can be regarded as a user-item graph at the aggregate level or
a larger scale. This enlightens us to construct a bipartite graph based on the human demand inferred
from the OD flow, and then we can use the indicators of the node importance in the graph to portray
the attractiveness of commercial agglomerations.

After characterizing attractiveness, as mentioned earlier, two questions remain to be answered,
one is the extent to which environmental variables reflect attractiveness, and the other is how these
variables affect attractiveness. As data-driven and black-box models, machine learning models
represented by random forests and neural networks have a powerful ability to model irregular
patterns (Breiman, 2001; Drucker et al., 1996; Jordan and Mitchell, 2015). It can help us better
predict attractiveness based on environmental variables to answer the first question. And its practical
significance is to help us estimate the popularity of new commercial centers among residents before
designing. In addition, due to spatial heterogeneity, the relationship between these variables and
attractiveness is usually not spatially stationary. Geographically weighted regression (GWR) allows
its regression coefficients to vary with spatial location, so it can effectively discover the spatial
variation (Brunsdon et al., 1996) and answer the second question. It has been widely adopted in the
driving factors analysis of carbon emission (Zhou et al., 2022), public transport usage (Chiou et al.,
2015), and housing price (Kang et al., 2021). This spatial analysis can guide us in the targeted
allocation of urban infrastructure to improve business attractiveness, such as knowing which areas
depend more on point-of-interests (POIs) and which areas show more urgent transportation needs.

Therefore, this paper takes the commercial agglomeration as the research object, from the side of
the human demand rather than the environmental supply, to more objectively and intuitively
characterize the attractiveness, and further analyze its influencing factors. Specifically, based on the
mobile phone positioning data, we extract the travel flow from the source grids to the commercial
agglomerations, and construct a bipartite graph to calculate the centrality of the nodes as the measure
of attractiveness. Then, after summarizing various environmental variables (including: POIs, land
cover, transportation, population density), we select the random forest model to predict the at-
tractiveness of commercial agglomerations, and analyze the importance of each variable. Finally, we
further adopt the multiscale geographically weighted regression to study the spatial heterogeneity of
the relationship between environmental variables and attractiveness.

The main contributions of this research are the following three points:

· Wemeasure the attractiveness of the commercial agglomeration from the human demand side
rather the environmental supply, using the node centralities in the bipartite graph.

· We use the random forest model to achieve accurate predictions of attractiveness, with
environmental features like POIs, land cover, transportation and population density as input.

· We adopt the multiscale geographically weighted regression to analyze the spatial non-
stationarity of the effects of some typical environmental features on attractiveness.
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The rest of the paper is organized as follows. Section “Study area and dataset” provides an
overview of the study area and datasets. Section “Methodology” describes the roadmap of the study:
feature engineering, bipartite graph modeling, attractiveness prediction, and spatial heterogeneity
analysis. Section “Results” and “Discussions” presents the interesting findings and important results
of our research. Section “Conclusions” summarizes the main conclusions and improvement di-
rections of the study.

Study area and dataset

Study area

The study area is Beijing, the capital of China, which is also a commercially developed and densely
populated economic center in China, as shown in Figure S1 in the Supplementary Material. The
commercial agglomeration data is obtained from an open-access dataset (Peng et al., 2022), which
contains the built-up footprints of 249 commercial agglomerations in Beijing, 2019. The dataset
includes information such as ID, Chinese and English names, and geometry in the format of Esri
shapefile and the coordinate system of WGS 84. Figure 1(a) shows the study area and the footprints
of some typical commercial agglomerations in Beijing.

Dataset

OD flow data is provided by China Unicom Smart Steps Company (http://www.smartsteps.com/),
one of China’s largest population big data service providers. The dataset is extracted from China
Unicom’s mobile phone signaling data in May 2019, with a spatial resolution of 250-m. According
to the user stay patterns within 1 month, three stay types (residence, work and visit) can be
identified, and we have eliminated the human flowwhose stay type is residence or work. Further, we
aggregate all the flow visiting the commercial agglomerations and count the average number of
visitors per day as the intensity of the flow. Finally, we extract 123,769 OD flows and the distribution
of the flow intensity is shown in Figure 1(b).

Figure 1. Study area and dataset: (a) Study area and the footprints of some commercial agglomerations. (b)
The distribution of the human flow intensity.
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Methodology

The research framework of the paper is shown in Figure 2. First is the feature engineering, which
integrates features like POIs, land cover, transportation, and population for each commercial
agglomeration to reflect its environmental supply level. Then is the bipartite graph modeling, which
extracts the OD flow from source grids to commercial agglomerations based on the mobile phone
location data, to construct the bipartite graph, and calculate the centralities of the nodes like degree,

Figure 2. The framework of the study: (a) Feature engineering: integrate environmental factors like POIs, land
cover, transportation and population. (b) Bipartite graph modeling: calculate node centrality to measure
attractiveness based on human flow. (c) Attractiveness prediction: achieve accurate predictions with
environmental factors as inputs and attractiveness as outputs based on random forest. (d) Spatial heterogeneity
analysis: analyze spatial variation in the effects of various environmental factors on attractiveness based on
the multiscale geographically weighted regression.
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betweenness, and pagerank as the measures of attractiveness from the perspective of human de-
mand. Next is the attractiveness prediction, which uses the environmental factors of the commercial
agglomeration as the independent variables and the attractiveness as the target, realizes a highly
accurate prediction based on random forest, and calculates the importance of each feature. The final
step is the spatial heterogeneity analysis, where we further adopt the multiscale geographically
weighted regression to analyze spatial variation in the effects of various environmental factors on
attractiveness, taking into account spatial non-stationarity.

Feature engineering

Based on the existing studies, we decide to use data such as POIs, land cover, transportation, and
population to characterize the service diversity, environmental comfort, transportation convenience, and
population density, thereby reflecting the environmental supply side of the commercial agglomerations.

(1) POIs. We obtain the complete POI data of Beijing through the Amap API (https://lbs.amap.
com/api/webservice/summary/), which has information like location and category. We make
an intersection between the POIs and the footprints of the commercial agglomerations to
associate them. Due to a large number of POI categories, the top 10 categories of POIs related
to commercial attributes are kept, as shown in Table S1 in the Supplementary Material, and
the number of each category is used as the POI feature of the commercial agglomerations.

(2) Land cover. This physical feature is based on remote sensing imagery through semantic
segmentation. Remote sensing imagery is provided by Google Earth in 2018 with a spatial
resolution of 1 m. The model is the DeepLabV3 + which adopts a pre-trained Xception on
the ImageNet-1k dataset as the backbone (Chen et al., 2018a; Deng et al., 2009). We extract
four types of land cover, as shown in Table S2 in the SupplementaryMaterial, and calculate the
proportion of the area of each type in each commercial agglomeration as the land cover feature.

(3) Transportation. We use the road network to reflect the convenience of private transportation
and the bus/subway stations to measure the accessibility of public transportation. Road
network data comes from OpenStreetMap. (https://www.openstreetmap.org/). We choose
three categories: residential (street or road generally used for local traffic within settlement),
main (highways with higher levels than residential), and others (other roads in addition to
the above two categories). We count the length of three types of roads in each commercial
agglomeration as the private transportation feature. Bus and subway station data also comes
from the Amap API, for each commercial agglomeration, we count the number of bus and
subway stations in its 1 km buffer as the public transportation feature.

(4) Population density. On the one hand, population density reflects economic dynamism, on the
other hand, may bring congestion, that is, there is a dual effect, so it is necessary to consider
the impact of population on attractiveness. The population data comes from WorldPop
(https://www.worldpop.org/) for China in 2020, with a resolution of 100-m. We count the
average population density of each commercial agglomeration as the population feature.

Bipartite graph modeling

Big geo-data such as mobile phone location data records a wealth of individual movement infor-
mation, so we can easily extract the flow of people who have reached the commercial agglomerations
and their source grids.We use the bipartite graph as an effective tool tomodel this visiting relationship.

The bipartite graph, also called the bigraph or two-mode graph, canmodel two types of entities and their
relationships. A graphG ¼ ðU ,V ,EÞ is bipartite if its nodes can be divided into two disjoint subsetsU ,V ,
such that each edge in E 4 U ×V connects a node inU to one in V . Figure S2(a) in the Supplementary
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Material is an example that can represent the relationship between user-item, road-intersection, and people-
place. The bipartite graph can also be described by an adjacency matrixW of size jU j× jV j, which can be
0-1 or weighted, wij represents the weight of the edge between node i in U and node j in V .

In this study, if we treat the commercial agglomerations and source grids as two node sets, and the
human flow between them as the edges, then we can build a weighted bipartite graph of “com-
mercial agglomeration-source grid,” as shown in Figure S2(b) in the SupplementaryMaterial. A key
issue here is how to get the weights of the edges based on the flows. From the perspective of people-
place interaction, a highly attractive location tends to attract a large number of residents, and
residents tend to travel long distances to visit the location (Wang et al., 2021; Arbués et al., 2016).
This means that we need to consider both the flow volume and the flow length to define the edge
weights (Wang et al., 2021), as shown below

wij ¼ volij � lenijP
jvolij �

P
jlenij

, 0 ≤ i ≤ jU j � 1; 0 ≤ j ≤ jV j � 1 (1)

where volij and lenij denote the volume and length of the flow between the commercial agglom-
eration i and source grid j, respectively. To avoid the effect of excessive outliers, the weights are
normalized by the total volume and length of all the flows that reach the commercial agglomeration.

After building the bipartite graph, we use the centrality scores of the nodes in the graph to measure
the attractiveness of commercial agglomerations. Many studies use centralities such as degree,
betweenness, closeness, and pagerank (Koschützki et al., 2005) to measure the importance of a
location in a city, based on street networks (Crucitti et al., 2006), bus routes (Soh et al., 2010), taxi
trajectories (Huang et al., 2015), and human flows (Cheng et al., 2013). But these studies are all about
one-mode graphs, and little attention is paid to the commercial agglomeration as the research unit.

We choose to measure the attractiveness with the three centralities of degree, betweenness, and
pagerank, and the descriptions are shown in Table 1. The input of the calculation is a bipartite graph,
where the commercial agglomerations and source grids are the node sets, the human flow is the edge
set, and the output is the centrality score of each commercial agglomeration. The degree and
betweenness in the bipartite graph are calculated through the NetworkX package in Python. And the
pagerank is implemented through the BiRank package in Python, which is also based on the iterative
propagation of the nodes’ scores according to the edge weights, which is an extension of pagerank
for the bipartite graph (He et al., 2016). After calculating the centrality scores, we use the maximum
normalization to uniformly scale the scores to within 0–100 to make them comparable

Table 1. The definitions of three centralities: degree, betweenness, and pagerank.

Centrality Description Formula

Degree The sum of the weights of the edges that
connect the node i

CDðiÞ ¼
P

jwij, i2U, j2 V

Betweenness The sum of the fraction of all-pairs
shortest paths that pass through the
node i

CBðiÞ ¼
P

s ≠ i ≠ t2ðU[VÞ
σstðiÞ
σst

, where σst is the total
number of shortest paths from node s to node t,
σstðiÞ is the number of these paths that pass
through the node i

PageRank The likelihood that a surfer randomly
walks to the node i based on the
weights of the edges. A node should
be ranked high if connected to many
high-ranked nodes

CU
PRðiÞ ¼ α

P
j

wijffiffiffi
di

p ffiffiffi
dj

p CV
PRðjÞ þ θ,

CV
PRðjÞ ¼ β

P
i

wijffiffiffi
di

p ffiffiffi
dj

p CU
PRðiÞ þ γ, where di, dj are the

weighted degrees of node i and j for normalization,
α, β are the damping factors, θ, γ are the
initialization variables (He et al., 2016)
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Cnorm ¼ 100 ×
C

Cmax
(2)

Attractiveness prediction

So far, we have summarized multisource environmental factors to reflect its supply capacity, and
measured the attractiveness based on human demand. It is necessary to accurately predict the
attractiveness based on these environmental factors, which will help with urban planning, for
example, provide a theoretical basis for policymakers to estimate the popularity among the residents
before designing new commercial agglomerations.

Machine learning models have proven to be powerful in modeling irregular and nonlinear
patterns, among which linear regression (LR), support vector machine (SVM), and random forest
(RF) are the most widely used classical models (Jordan and Mitchell, 2015). LR assumes a linear
relationship between the independent and dependent variables, and generally fits the model pa-
rameters by ordinary least squares. Because its model formulas are always simple and the linear
assumptions are too strong, it performs well when modeling linear relationships, but not in other
situations. SVM enables classification by mapping sample points into high-dimensional space and
separating them with maximum margins using hyperplanes (Drucker et al., 1996). Therefore, SVM
is generally adopted for classification tasks (especially binary classification), and does not stand out
in regression tasks. RF is an ensemble learning model based on decision trees, which avoids
overfitting and improves model performance by building multiple trees and combining the results
(Breiman, 2001). In many classification and regression tasks, RF usually works better than other
single-learner models, such as LR and SVM. Therefore, we choose three classical models of LR,
SVM, and RF, with features such as POI, land cover, transportation, and population as inputs, and
three centrality scores as outputs to compare their performance. We divide the data into training set
and test set in a 7:3 ratio, performing a 10-fold cross-validation on the training set to avoid
overfitting. In addition, analyzing the importance of each feature to the model can also provide
valuable suggestions for policy development. In this study, the machine learning models are all
implemented with default parameters based on the Sklearn package in Python, and it has been
experimentally found that it can achieve or approach optimal performance.

Spatial heterogeneity analysis

In addition to achieving an accurate prediction of attractiveness, it is also necessary to study the
spatial variation in the impact of these environmental factors on attractiveness due to spatial
heterogeneity. It will not only help to guide the configuration of urban infrastructure, but also deepen
understanding of the human–environment relationship. Compared to the global ordinary least
squares (OLS), the geographically weighted regression (GWR) is a local regression model whose
parameters vary with spatial location. So it can effectively model spatial non-stationarity (Brunsdon
et al., 1996), and has been used to analyze the driving factors of carbon emission (Zhou et al., 2022),
public transportation usage (Chiou et al., 2015), housing price (Kang et al., 2021). Its formula is as
follows (Brunsdon et al., 1996)

yi ¼ β0ðui, viÞ þ
X

j

βjðui, viÞxij þ ϵi (3)

where i denotes the i -th commercial agglomeration, ðui, viÞ is the geographical coordinates of its
geometric center. yi represents the dependent variable, and xij represents the j -th independent

Huang et al. 2477



variable. β0ðui, viÞ is the intercept term, βjðui, viÞ is the local regression coefficient, and 2i is the
random error term. As can be seen from the formula, the regression coefficients vary with location,
so GWR can effectively model spatial non-stationarity. Although GWR is efficient, it implicitly
assumes that each independent variable has the same spatial scale, which may not be true in some
cases (Mansour et al., 2021; Zhou et al., 2023). Later, a multiscale geographically weighted re-
gression (MGWR) is proposed to allow the relationship between the independent and dependent
variables to vary at different spatial scales (Fotheringham et al., 2017). In MGWR, the coefficients
βbwjðui, viÞ of different independent variables have different bandwidths to describe different spatial
scales, as shown in the following formula (Fotheringham et al., 2017)

yi ¼ βbw0ðui, viÞ þ
X

j

βbwjðui, viÞxij þ ϵi (4)

In this study, due to the many factors, we select the explanatory variables by category: (1) For
POIs, we choose SHP because it is the most numerous and most relevant to the commercial at-
tributes. (2) For land cover, we choose the green ratio because it represents natural environmental
comfort to some extent. (3) For transportation, we choose the main road length to reflect the private
transport convenience when traveling across regions, and choose the number of bus stops to indicate
the public transport accessibility. 4) For population, we choose population density. The variance
inflation factors (VIFs) of the above variables are tested to be far less than 10, so multicollinearity
does not pose a problem here (Wheeler and Tiefelsdorf, 2005).

We select the adaptive bisquare kernel function to generate the spatial weights matrix, while the
criterion for optimal bandwidth is the corrected Akaike Information Criterion (AICc). The coef-
ficient of determination (R2) and the Akaike Information Criterion (AIC) are adopted as goodness-
of-fit metrics compared to the OLS model. This study implements the MGWR and OLS through the
MGWR package from PySAL (https://github.com/pysal/mgwr).

Results

Bigraph centrality

After building the bipartite graph, we calculate the centrality score of each commercial agglom-
eration based on Table 1, and its boxplot is shown in Figure S3 in the Supplementary Material. We
can see that most of the scores of degree and betweenness are at a low level, and the median is less
than 20% of the maximum, reflecting the great inequality of the attractiveness level of the
commercial agglomeration. In pagerank, this difference is much smaller, and the minimum is more
than 40% of the maximum, because in the formula in Table 1, we use the degrees of nodes to
normalize, thus suppressing the contribution of high-degree nodes to some extent (He et al., 2016).

We further draw the spatial distribution maps of the three centralities, as shown in Figure 3. First,
we can find that the three centralities all roughly show the trend of high values in urban centers and
low values in the surrounding areas. The distribution of the high-value regions of degree is relatively
scattered, not only in urban areas within the 6th Ring Road, but also in the center of some suburbs,
such as Yanqing and Changping in the northwest, Huairou, Miyun, Pinggu, and Shunyi in the
northeast. Betweenness presents a similar spatial layout with degree, the general high-value area is
more concentrated, but the above suburban centers with high-degree value, in addition to
Changping and Shunyi, have a lower betweenness value. Finally, there is pagerank, whose dis-
tribution of high-value areas is the most concentrated, almost all located within the 5th Ring Road,
and has the most apparent difference in values from the inside to the outside of the city.
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We select the top 10 commercial agglomerations on the three indicators for further comparison,
as shown in Table 2. First of all, the top 10 of degree, we find that they can be roughly divided into
two types: one is the center of the surrounding suburbs, such as Changping Center (Changping
District), Yuegezhuang (Pinggu District), Baihe East (Miyun District), Liangxiang (Fangshan
District), Huangcun (Daxing District); the other is the economically developed and densely
populated areas in the city center, such as CBD, Shuangjing, Qingnian Road (the core commercial
belt in Chaoyang District), Zhongguancun (high-tech industrial center in Haidian District),
Tiantongyuan (a famous commuter town in Changping District that carries the function of resi-
dence). The reason for this may be that degree only considers the connection nature of the node to its
first-order neighbors (Koschützki et al., 2005), and is easily affected by long-distance flows, as
shown in equation (1). At the same time, suburban commercial agglomerations are outstanding in
degree centrality because they have less competition and can attract distant customers.

Then there is betweenness, except for Changping Center, the other commercial agglomerations
are located in the urban center. They are economically developed and densely populated, such as

Figure 3. Spatial distribution of three centralities: degree, betweenness, and pagerank.
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CBD, Shuangjing, Qingnian Road (the core business districts along Chaoyang Road and Jingtong
Expressway within the 4th Ring Road in the west of Chaoyang District); Wangjing, Jiuxianqiao,
Sanyuanqiao (emerging new towns along Airport Expressway within the 5th Ring Road in the north
of Chaoyang District); Zhongguancun (high-tech industry center in Haidian District); Huilongguan
and Tiantongyuan (the two famous commuter towns in Beijing). It can be seen that the attractive
commercial agglomerations identified by betweenness are more in line with reality and our
cognition, which may be because betweenness focuses on the bridge-like nodes between groups and
groups in the network. And those nodes are the hub nodes in the network (Barthelemy, 2004), and
the above commercial agglomerations exactly play such a role in the urban system.

Finally, pagerank, we find that in addition to the CBD and Xizhimen, the other commercial
agglomerations are generally very small, with an average area of 0.461 km2 and an average POI
count of 781.375, which is lower than the average value of 0.733 km2 and 1181.755 of all
commercial agglomerations. However, CBD has an area of 3.195 km2 and 10,547 POIs, and
Xizhimen has an area of 2.404 km2 and 3293 POIs. Further, we find that the average distance from
those small-size commercial agglomerations to the CBD is only 3.18 km, geographically highly
close. Considering that the pagerank algorithm has a “stronger the stronger” Matthew effect (Page
et al., 1999; Merton, 1968), nodes connected to high-rank nodes also have a high-rank trend, as
shown in Table 1, which makes commercial agglomerations close to the CBD also have high
pagerank scores.

Attractiveness prediction results

Taking the features of POIs, land cover, transportation, and population as inputs and the three
centrality scores as outputs, we compare the prediction effects of three models: linear regression,
support vector machine, and random forest, as shown in Table 3. Based on the results, linear
regression outperforms support vector machine a lot, probably due to the relatively strong linear
relationship between inputs and outputs. As a classical ensemble learning method, random forest
performs much better than the other two models, up to 0.903, 0.846, and 0.760 on R2 of degree,
betweenness, and pagerank, respectively. Therefore, we choose the random forest model for
subsequent analysis. Figure 4(a) shows the scatter plots between the true and predicted values of the
random forest model. We find a high degree of match between the two values, indicating that
random forest can better model the complex nonlinear relationships between environmental factors
and attractiveness, resulting in high prediction accuracy.

Table 2. Top 10 commercial agglomerations based on three centralities: degree, betweenness, and pagerank.

Rank Degree Score Betweenness Score PageRank Score

1 Changping Center 100 CBD 100 CBD 100
2 CBD 88.87 Zhongguancun 79.95 Hongmiao 99.63
3 Yuegezhuang 88.54 Shuangjing 78.89 Tuanjie Lake 96.31
4 Baihe East 83.82 Huilongguan 78.89 Yansha 92.69
5 Shuangjing 81.12 Wangjing 74.96 Chaoyang Park 86.19
6 Liangxiang 81.03 Qingnian road 67.43 Xizhimen 85.83
7 Huangcun 78.90 Jiuxianqiao 65.24 Guangqumen 80.32
8 Zhongguancun 77.01 Changping Center 64.25 Donghuashi 79.81
9 Huilongguan 74.85 Sanyuanqiao 63.86 Balizhuang 77.78
10 Qingnian Road 69.99 Tiantongyuan 62.12 Shilibao 73.39
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We further calculate the importance of each variable for the random forest model, and Figure 4(b)
shows the top 10 variables of three indicators based on their contribution to the model. The first is
degree, which can be seen that the number of POIs in categories such as daily life service (DLS),
shopping (SHP), food and beverages (FaB), has a significant influence on the model. Besides, the
length of the main roads (Main), representing the convenience of private transport, contributes a lot
to the model, and the area representing the size of the commercial agglomeration also plays an
important role. Then there is betweenness, the variable that has the greatest impact on the model is
POIs, of which the contributions of daily life service (DLS), transportation service (TrS), sports and
recreation (SaR), food and beverages (FaB) and shopping (SHP) are particularly prominent. It also
confirms the phenomenon above that the high-value areas of betweenness are mostly distributed in
the city’s economically developed and densely populated core areas. Finally, there is pagerank,
where we find that population density is the most important feature, and it is consistent with the

Table 3. Comparison of the prediction effects of different models on three centralities: degree, betweenness,
and pagerank.

Centrality Model R2

Degree SVM 0.512
LR 0.750
RF 0.903

Betweenness SVM 0.483
LR 0.672
RF 0.846

PageRank SVM 0.461
LR 0.654
RF 0.760

Figure 4. The prediction results of three centralities using random forest: (a) fitting performance, (b) feature
importance.
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previous finding that many of the high-value areas of pagerank occur near the CBD with extremely
high population density. Besides, the main influencing factors of pagerank are relatively mixed. In
addition to population density, POIs (i.e., the number of shopping (SHP), medical service (MdS),
and food and beverages (FaB)), land cover (i.e., the area ratio of green, impervious and buildings),
transportation (i.e., the number of bus stops (Bus) and the length of other roads (Other)) are all in the
top 10 important variables of pagerank. In general, the number of POIs representing the service
diversity is the most dominant factor of commercial agglomeration attractiveness, which reflects its
functional attributes (i.e., providing goods or services to residents), transportation and population
density are also important variables, but land cover, although to some extent represents envi-
ronmental comfort, the impact is relatively not noticeable.

Spatial heterogeneity analysis results

We compare MGWR to OLS to explore spatial variations in the relationship between the ex-
planatory variables and attractiveness. Table 4 shows that for the three centralities, MGWR is about
15%–45% better than OLS in terms of R2 and AIC. Specifically, compared to OLS, MGWR
increases by 15.9% on R2 and decreases by 18.4% on AIC for degree, 28.9% and 28.1% for
betweenness, and 36.8% and 44.6% for pagerank, respectively. This suggests a large spatial
heterogeneity in the study area, which allows MGWR as a local model to achieve better results in
fitting the data.

As mentioned in Section “Bi-graph centrality”, the calculated attractiveness of betweenness is
more in line with reality and our cognition, so we only choose betweenness for subsequent analyses
for simplification, and the explanatory variables are shown in Section “Spatial heterogeneity
analysis”. Table S3 in the Supplementary Material shows the statistical results of the MGWR
parameter estimates, including statistics such as mean, standard deviation, minimum, median, and
maximum. First of all, we can find that the mean values of the parameters of all explanatory
variables are greater than 0, which indicates that No.Shopping POIs, Green Ratio, Main Road
Length, No. Bus Stops and Population Density generally have a positive impact on attractiveness,
that is, increasing the values of these factors will bring about an overall increase in attractiveness.
Second, the regression coefficients span a wide range in standard deviation, with a minimum of
0.005 (No. Shopping POIs) and a maximum of 0.074 (No. Bus Stops). This large difference tells us
that there is a significant spatial variation in the effects of variables in the study area, and also proves
the need to use local regression models. Finally, we find that Green Ratio and Pop Density have a
bidirectional effect on attractiveness, such as the minimum and maximum of the regression co-
efficient of Green Ratio are �0.031 and 0.014, while �0.021 and 0.102 for Pop Density, re-
spectively. This suggests that an increase in Green Ratio and Pop Density in some areas will lead to
an increase in attractiveness, while in others, it may be the opposite, which is something that global
models cannot reveal.

To more intuitively show the spatial heterogeneity of the relationship between the explanatory
variables and attractiveness, we generate the spatial distribution maps of their regression

Table 4. Comparison between MGWR and OLS on three centralities: degree, betweenness, and pagerank.

Centrality

MGWR OLS

R2 AIC R2 AIC

Degree 0.749 268.151 0.646 328.626
Betweenness 0.754 264.771 0.585 368.293
PageRank 0.781 222.707 0.571 402.044
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coefficients. Each commercial agglomeration is represented by its Thiessen polygon for visuali-
zation, as shown in Figure 5. First, in the city center, the local R2 is a little bit lower than the
surrounding areas (about 0.675 vs 0.800). It indicates that the city center is more structurally
complex, and more implicit factors need to be considered to achieve better predictions. The re-
maining subgraphs in Figure 5 are the distribution of the regression coefficients of the selected
explanatory variables in the study area. The coefficient of No. Shopping POIs roughly shows a
trend that the city center is lower than surrounding areas, especially Yanqing and Changping in the
northwest show high values. It may be due to the limited level of economic development of the
suburbs, and the number of POIs representing the service level to some extent is insufficient.
Therefore, for the suburbs, we can increase the number of shopping POIs to increase the attrac-
tiveness of the commercial agglomeration by a larger margin. Green Ratio shows a bidirectional
effect on attractiveness, showing a positive effect in the city center and the southern area, because
these areas are mostly urban built-up areas and green space resources are scarce, so increasing the
green ratio of the commercial agglomerations in the city center will help improve the attractiveness.
In the north, the suburbs show a negative effect, that is, the higher the green ratio, the more remote
the location, which brings less attractiveness. ForMain Road Length, the stronger effect occurs in
the northeast, northwest and southwest suburbs, while the effect in the urban center is lower. It may
be due to the more developed road network in urban centers and the more inadequate coverage in the
suburbs, which results in a “basin-like” phenomenon. For No. Bus Stops, it can be seen that the
overall spatial variation in the regression coefficients is very obvious. The effects are lower in the
northeast and southern suburbs, while high-value areas appear from the city center to the northwest.
The reason may be that many suburban residents choose to travel by private car, motorcycle,
bicycle, and walking, and rely less on public transportation compared to the residents in the city
center. In addition, for the high-value areas in the northwest, Yanqing District has a huge number of
tourists brought by “5A” scenic spots such as the Badaling Great Wall (Figure S1 in the Sup-
plementary Material), and Changping District has a large number of commuters living in the two
large communities of Tiantongyuan and Huilongguan, so there exists a more urgent demand for
public transportation resources. Finally, there is Pop Density, its effect on the attractiveness of

Figure 5. Spatial distribution of the MGWR coefficients.
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commercial agglomerations is also bidirectional. In the city center, population density negatively
correlates with attractiveness, which can be attributed to the congestion caused by overpopulation.
And in the northern suburbs, increased population density means an increase in labor and customers,
thus leading to a rise in the supply and demand for services and products, which positively impacts
on the attractiveness of commercial agglomerations.

Discussions

As described in Section “Introduction”, the commercial agglomeration of this study is focused only
on its physical infrastructure, which is reflected in the open-access datasets used. However, the
scope of services is also a crucial element in business analytics, such as the trading area defined by
Huff (Huff, 1964). Therefore, the service scope of commercial agglomerations is further explored
based on human mobility big data. For each commercial agglomeration, we make a weighted
average of the length of all the flows arriving at it by the volume, denoted as the average radius, as
shown in equation S(1) in the Supplementary Material. This metric reflects the actual scope of
services for each commercial agglomeration, and we further have some interesting findings.

Finding a grading effect of service radius

We calculate the average radius of 249 commercial agglomerations and divide them into three
groups based on Jenks natural breaks (Jenks, 1967). The average radius shows an obvious grading
effect at the breakpoints of 15.3 km and 33.6 km, as shown in Figure 6(a). According to statistics,
there are 176 commercial agglomerations in the [0: 15.3 km) interval, accounting for 70.7%, 65 in
the [15.3 km: 33.6 km) interval, accounting for 26.1%, and 8 in the [33.6 km) interval, accounting
for 3.2%. Clearly, the average service radius of most commercial agglomerations is within 15 km,
which takes about 30 min by car in the city.

The above three intervals are denoted from small to large as Level 1, 2, and 3, and their spatial
distribution is shown in Figure 6(b). Obviously, the distribution of the levels is regular, showing a
concentric circle phenomenon that gradually increases from the inside to the outside: Level 1 is
basically all located within the 6th Ring Road and is concentrated in the city center, Level 2 is
distributed near the 6th Ring Road, and Level 3 is mainly found in the centers of several suburbs. It
is reasonable because in urban centers, there are always a large number of commercial

Figure 6. The average radius of each commercial agglomeration: (a) Grading effect. (b) Spatial distribution.
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agglomerations to choose from, and residents do not have to travel long distances to meet their
needs, while in the suburbs, the opposite is true, residents sometimes have to go far to get the goods
or services they want. But this finding, while intuitive (as we have explained), is inconsistent with
the Central Place Theory (Berry and Garrison, 1958; Getis and Getis, 1966), in which it is pointed
out that higher-order central places often have a larger range of services.

Explanation on the grading effect

As we all know, Voronoi diagram is a classical spatial partitioning method based on the spatial
layout of a given set of sample points (Aurenhammer, 1991). Each sample point has a corresponding
Voronoi cell (or Thiessen polygon), within which each location is closer to that point than to any
other. In urban geography, it is often used in catchment analysis such as stores, hospitals, and cell
phone base stations (Boots and South, 1997; Guruprasad, 2011; Rezende et al., 2000). Therefore, we
hope to explore whether the Voronoi diagram could be used to explain the “strange” phenomenon of
the service radius mentioned in Section “Finding a grading effect of service radius”, and whether
there is an intrinsic correlation between them. Within the boundary of Beijing, the Voronoi diagram
is generated by QGIS, where commercial agglomerations are represented by their geometric centers.
The corresponding Thiessen polygon for each commercial agglomeration can represent its theo-
retical service area. For each polygon, its area and perimeter are calculated, and the area-perimeter
ratio can be regarded as a representation of the polygon size, which is recorded as the average width,
as shown in equation S(2) in the Supplementary Material.

After calculating each commercial agglomeration’s average radius and width, we make its
scatter plot and calculate the Pearson correlation coefficient between the two values, up to 0.796
(p < 0.001), as shown in Figure S4 in the SupplementaryMaterial. This indicates a high correlation
between the average radius of the commercial agglomerations and the competitive relationship
brought about by their spatial layout, which is well in line with the Voronoi theory (Brassel and
Reif, 1979). This significant correlation also reminds us that traditional spatial analysis methods
still have great application value in urban planning today.

Conclusions

In summary, using the tool of the bipartite graph, this study adopts the centrality scores (degree,
betweenness, and pagerank) to measure the attractiveness of commercial agglomerations from the
human demand side rather than the environmental supply side. Then, random forest is used to
predict attractiveness accurately using environmental variables such as POIs, land cover, trans-
portation, and population as inputs. And the spatial heterogeneity of the effects of these variables on
attractiveness is analyzed based on multiscale geographically weighted regression. Each of the three
centralities has its characteristics, and the attractiveness measured by betweenness is more in line
with reality and our cognition. Based on the summarized environmental features, random forest can
accurately predict attractiveness, with R2 of 0.903, 0.846, and 0.760 for the above centralities. The
estimated parameters of MGWR show that there is indeed a large spatial heterogeneity, among
which the number of shopping POIs, the length of main roads, and the number of bus stops
positively affect attractiveness, while the impact of greening ratio and population density is bi-
directional. As for the service scope, we observe a grading effect in the average radius of com-
mercial agglomerations, about 70% is less than 15 km. Moreover, we further find that this grading
effect significantly correlates with the Voronoi diagram, which can be explained to some extent.

This study still has deficiencies and needs to be improved in the future. For example, more
characteristics need to be considered, such as average price, customer praise, parking convenience,
and visual appearance, which will impact attractiveness. Questionnaires or interviews can be
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implemented to verify the calculated attractiveness’s rationality further. In addition, considering the
characteristics of different centralities, an effective combination of multiple centrality scores to form
a more reasonable measure of attractiveness is also a good direction for future work.
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