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Abstract
Commuting flow prediction is a crucial issue for transport optimization and urban plan-
ning. However, the two existing types of solutions have inherent flaws. One is traditional 
models, such as the gravity model and radiation model. These models rely on fixed and 
simple mathematical formulas derived from physics, and ignore rich geographic semantics, 
which makes them difficult to model complex human mobility patterns. The other is the 
machine learning models, most of which simply leverage the features of Origin-Destination 
(OD), ignoring the topological nature of the interaction network and the spatial correlation 
brought by the nearby areas. In this paper, we propose a ‘preprocessing-encoder-decoder’ 
hybrid learning model, which can make full use of geographic semantic information and 
spatial neighborhood effects, thereby significantly improving the prediction performance. 
Specifically, in the preprocessing part, we divide the study area into grids, and then incor-
porates features such as location, population, and land use types. The second step of the 
encoder designs a convolutional neural network (CNN) to achieve the fusion of neighbor-
hood features, constructs a spatial interaction network with the grids as nodes and the flows 
as edges, and then uses the graph convolutional network (GCN) to extract the embeddings 
of the nodes. In the last step of the decoder, a random forest regressor is trained to pre-
dict the commuting flow based on the learned embedding vectors. An empirical study on 
a commuter dataset in Beijing shows that our proposed model is approximately 20% better 
than XGBoost (state-of-the-art), thus proving its effectiveness.
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1  Introduction

Traveling is the movement behavior of human beings from an origin to a destination in 
geographic space, and it is also a way of spatial interaction between regions. People often 
travel for certain purposes, such as work, school, shopping, entertainment, etc., and these 
activities are undertaken by places with specific functions, which is a manifestation of the 
coupling relationship between people and the environment [1, 2]. Considering this people-
place interaction, [3] gives a definition of geographical semantics, paying particular atten-
tion to the functional attributes of places that carry human activities. Commuting is an 
important type of travel, which refers to the behavior of residents going back and forth 
between home and workplace, and people’s living and working are typical activities that 
occur in the places, therefore, commuting is supposed to be related to the geographical 
semantics of the regions (such as land use types, etc.) [4–9].

Accurately predicting the number of commuters between two places not only helps us 
understand the internal geographical mechanism of human mobility, but also guides poli-
cymakers to optimize the transportation network and to configure the urban infrastructure. 
Commuting flow prediction is different from the traffic forecasting problem in the follow-
ing aspects [10–13]: (1) The scale of the spatial unit. The analysis units of traffic forecast-
ing are mostly road nodes, bus stops, or monitoring sensors, attached to the road network 
for real-time traffic management, while the units of commuting flow prediction are mainly 
grids, traffic analysis zones (TAZs), streets, or census tracts, to better configure the urban 
infrastructure to meet the travel demand; (2) Time independence. Traffic forecasting is usu-
ally a dynamic time-series-based prediction that requires historical flow information, while 
commuting is a relatively repetitive and static behavior, which focuses more on spatial cor-
relation and is not closely related to time; (3) Geographical semantic relevance. Commut-
ers’ choice of location for home and work is closely related to the land use types of the 
places. For example, homes are generally in residential areas, workplaces are generally in 
commercial and industrial areas, and availability of public facilities also plays a role in the 
choice of home and workplace.

Existing commuting flow prediction models can be roughly divided into two catego-
ries. One is the traditional spatial interaction models [14, 15], such as the gravity model 
and the radiation model, which are mainly derived from the principles of physics. The 
former [16, 17] assumes that the intensity of interaction between two places is propor-
tional to their populations and decays with distance, while the latter [18, 19] combines the 
diffusion process with the theory of intervening opportunities and states that in addition 
to population, the interaction flow is also related to the number of opportunities between 
them. These models have relatively fixed inputs and simple expressions, unable to capture 
nonlinear and irregular patterns. They also ignore rich geographic semantic information 
which is supposed to be relevant to commuting [3, 4, 6], so it is difficult to model complex 
human mobility patterns. The other category is the machine learning models [20], such as 
artificial neural networks and tree-based models [21–23]. Although these data-driven and 
black-box models have poor interpretability, they are good at modeling complex patterns. 
One limitation of the existing models is that they simply use the features of the Origin-
Destination (OD), rarely considering the topological nature of the spatial interaction net-
work and the spatial correlations caused by the geographical and topological neighboring 
regions [24, 25].

To address these limitations, this paper proposes a hybrid learning (preprocessing-
encoder-decoder) model based on the graph convolutional network, which can make full 
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use of geographic semantic information and spatial proximity effects, thereby significantly 
improving the performance of commuting flow prediction. In the first preprocessing part, 
we divide the research area into grids, which have features like location, population, and 
geographical semantics (such as landuse types). Then the encoder achieves the fusion of 
neighborhood features through convolutional neural network (CNN), uses the grids as 
nodes and the flows as edges to construct a spatial interaction network, and then trains 
a graph convolutional network (GCN) to extract the representation vectors of the nodes, 
effectively utilizing the topological structure properties of the spatial interaction network. 
In the last step of the decoder, the learned representation vectors of the nodes, concat-
enated with the distance between them, are fed to a random forest regressor to achieve a 
more accurate prediction of commuting flow.

The main contributions of this research are the following three points:

•	 We propose a preprocessing-encoder-decoder hybrid learning model, which signifi-
cantly improves the prediction of commuting flow, especially in the absence of histori-
cal flow information;

•	 We combine CNN and GCN to fuse both geographical and topological neighbor fea-
tures, thereby effectively modeling the spatial correlations. To the best of our knowl-
edge, we are the first to consider both neighborhood effects in this task;

•	 We find that commuting is closely related to geographic semantics. The experimental 
results show that when the geographic semantics such as land use types are considered 
as input, higher prediction accuracy can be achieved.

The rest of the paper is organized as follows. Section 2 reviews the literature on com-
muting flow prediction and graph neural networks in spatial interaction and summarizes 
the existing problems. Section 3 provides a formal statement of the research problem. Sec-
tion 4 introduces the implementation principles and details of our proposed hybrid learning 
model (preprocessing-encoder-decoder). Section 5 presents the results of our model com-
pared with other baselines on a Beijing dataset and evaluates its performance. Section 6 
discusses the impact of hyperparameters, flow intensity/distance, and landuse data on the 
model. Section 7 concludes with major findings and future directions of the study.

2 � Related work

2.1 � Commuting flow prediction

This research mainly focuses on the prediction of commuting flow, which has attracted 
wide attention recently, because it is critical for traffic optimization and urban planning. 
The gravity and radiation models are the most common spatial interaction models. The 
gravity model assumes that the intensity of the spatial interaction between two places is 
directly proportional to their populations and inversely proportional to the power of dis-
tance [17], while the radiation model assumes that the main factor affecting interaction 
is not distance, but the number of intervening opportunities [26]. McArthur et  al. [27] 
research the transferability of the parameters of the gravity model and propose a statistical 
test method based on bootstrapping. Simini et al. [19] believe that the gravity model has 
shortcomings such as lack of theoretical derivation and the need for known data, so they 
propose a parameter-free radiation model that can predict commuting and mobility fluxes. 
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Lenormand et al. [15] systematically compare the gravity and radiation models on different 
datasets at different scales and find that the gravity model is generally better for predicting 
commuter flow. Although these models have few parameters and are easy to understand, 
their abilities to model complex patterns are limited.

With better abilities to capture nonlinear and irregular distributions, machine learning 
models have been gradually used in commuting flow prediction. Black [28] introduces 
the artificial neural network into spatial interaction modeling, using the same input as the 
gravity model. As a result, the prediction error is greatly reduced, so he believes that his 
model effectively detects patterns in the data. However, the study by [22] presents different 
results. When fitting the commuting trip distribution, they find that the multi-layer per-
ceptron is much worse than that of the traditional models. Simini et al. [6] design a deep 
neural network called Deep Gravity, which integrates multisource features such as point 
of interests (POIs), land use, and transportation, to achieve more accurate mobility flow 
generation. In addition to neural networks, tree-based models have also been applied to 
commuting flow prediction. Morton et al. [21] compare the XGBoost model with the grav-
ity and radiation models and find that the former performs better than the latter two mod-
els on multiple indicators. Based on Twitter data, [23] compare the gravity model, neural 
networks, and random forest on the task of fitting commuting trip distribution, and find 
that the random forest model has the best performance. Spadon et al. [29] select 22 urban 
socioeconomic indicators and find that the XGBoost model performs best on binary clas-
sification and regression tasks of commuter network reconstruction. These machine learn-
ing models can model complex patterns to a certain extent but do not consider the network 
topological properties and spatial proximity effects, which have been proven important in 
existing works [25, 30, 31].

2.2 � Graph neural networks in spatial interaction

There are connections of different strengths between things at different locations in 
geographic space, including matter, energy, and information, which is called spatial 
interaction [32]. From the perspective of the network, as a spatial interaction behav-
ior, human mobility forms a series of human activity networks, such as commuting net-
works. The rise of graph neural networks (GNNs) provides a unified knowledge extrac-
tion framework for these network data [33–36]. The main idea of GNNs is that the 
attributes of nodes are related to the local topology of the network, which is obtained 
through the propagation and aggregation of neighbor nodes’ attributes. The existing 
research of GNNs in spatial interaction mostly focuses on traffic forecasting, especially 
on the modeling of spatial and temporal correlation. Li et al. [10] innovatively propose 
a diffusion convolutional recurrent neural network (DCRNN) model, which models the 
traffic flow as a diffusion process on a directed graph, and extracts time series features 
through the gated recurrent unit (GRU), which effectively improves the prediction abil-
ity. Yu et al. [11] design multiple spatiotemporal convolution blocks, which effectively 
model the spatial and temporal dependence to achieve the state of the art. Zhao et al. 
[13] propose a T-GCN model, which uses GCN and GRU to extract spatial and temporal 
features to make up for the shortcomings of long-term traffic flow prediction. Yao et al. 
[31] focus on the spatial flow imputation and propose a spatial interaction graph convo-
lutional network model, and prove its effectiveness by comparing it with the gravity and 
radiation models. However, as mentioned in Section  1, there are differences between 
traffic forecasting and commuting flow prediction. The former models require historical 
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flows between locations to support the prediction, which are often not available in the 
latter scenario. Therefore, few studies have tried to apply GNNs to extract the features 
of commuting networks without knowing any historical information [30], and they also 
lack the grasp of the geographic semantic dependence of commuting behavior.

2.3 � Summary

In summary, the existing models for predicting commuting flow have inherent flaws. 
In the spatial interaction models represented by the gravity and radiation models, few 
parameters make it unable to take geographic semantics as input, and simple formu-
las limit the ability to model the complex patterns. The machine learning models rep-
resented by neural networks and tree-based models simply use the attributes of Ori-
gin-Destination, ignoring the topological properties of the spatial interaction network. 
Graph neural networks can effectively extract information from network data, but they 
are currently mostly used in traffic forecasting and rarely used in commuting flow 
prediction.

This research aims to apply graph neural networks to commuting flow prediction. 
Considering the geographic semantic relevance of commuting, we decide to take land 
use types as part of the input. Besides, we also believe that the following two proximity 
effects need to be considered in the prediction of commuting flow, as shown in Fig. 1:

•	 Topological proximity in the network. The features of nodes in the network are affected 
by the local structure and neighbor properties. In a spatial interaction network, if the 
neighbors of two nodes are similar, the intensity of their flow to the same destination 
should also be similar. The topological proximity effect can be effectively modeled by 
graph neural networks [34].

•	 Geographical proximity between the grids. According to Tobler’s first law of geography 
[24], the correlation between neighboring things in geographic space is more signifi-
cant. The flow of people generated or attracted by a geographic unit will be generally 
affected by neighboring areas. This has been proven in existing studies [25, 37], but this 
proximity effect is generally not considered in the prediction of commuting flow [30]. 
In this study, we model the spatial correlation to a certain extent through convolution at 
the beginning of the encoder.

Fig. 1   Two types of proximity effects: (a) Topological proximity; (b) Geographical proximity
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3 � Problem statement

In this section, we formalize the definitions and problem to clarify the research goal.

Definition 1  Geographic unit set V = {v1,v2,...,vn}. For spatial analysis, the geographic 
unit can be a grid, traffic analysis zone, street, census tract, etc. In this study, we divide the 
study area into 500m grids as the geographic units. Each grid has the features of location, 
population, land use types, etc., represented as a vector.

Definition 2  Commuter flow set F = {(vi,vj,fij)}. It is a set of triplets in which vi represents 
the origin (home), vj represents the destination (workplace), and fij is the flow from vi to vj, 
that is, the number of commuters.

Definition 3  Commuter network G = (V,F). The network is a weighted directed graph 
with the geographic unit set V as the nodes and the commuter flow set F as the edges.

Problem  When given a commuter network G = (V,F), learn a model M that is effective 
enough to predict the flow fij between any two nodes i and j, that is, fij = M(G,i,j), with 
minimal deviation from the true value.

4 � Methodology

In this section, we introduce the proposed model framework (Fig.  2) to address the 
problem mentioned in Section  3. In the preprocessing part, we divide the study area 
into grids and incorporate multisource features like location, population, and landuse 
types. Then the encoder achieves the fusion of neighboring features through CNN, thus 
rebuilding the commuting network and learning the representation vectors of the nodes 
with GCN as the backbone. Lastly in the decoder, the learned vectors of the origin/des-
tination, concatenated with the distance between them, are used to train a random forest 
regressor to predict the commuting flow.

4.1 � Preprocessing

This part focuses on the processing of multisource geo-data as input to subsequent 
encoder. The first step is rasterization, where we select the study area, get its minimum 
bounding rectangle, and divide it into 500m grids as geographic analysis units. Then is 
the feature summary, which integrates the location (normalized coordinates), population 
(living and working), and land use data as input attributes on the grid-scale. Location 
and population are to be consistent with the input of gravity model and radiation model, 
and the land use data is to enrich the geographical semantic information, which charac-
terizes the close relationship between commuting and urban functional attributes.
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4.2 � Encoder

The encoder is an embedding extractor that consists of two modules, CNN and GCN, 
to model the geographical and topological proximity effects mentioned in Section 2.3, 
respectively. It should be noted that both modules belong to the same pipeline and the 
weights of them are updated at the same time during the loss backward process.

First, we design a single-layer CNN to blend features. Convolution is an important 
operation in functional analysis, which is mainly used in the signal analysis [38]. After 
[39] propose CNN, it has been widely applied in the field of image processing. CNNs 
draw on the idea of the receptive field of visual neurons [40] to output multi-dimen-
sional feature maps by sliding different convolutional kernels on the input image and 
performing an element-wise multiplication and summation (similar to Sliding Average), 
thus realizing the extraction of local features. The formula for the convolutional layer is 
as follows.

where O(l) denotes the output image of the l-th layer, which can be input into the next layer 
after pooling, I(l) is the input image of the l-th layer, (u,v) means the coordinates of the 
pixel, K(l) is the kernel matrix and b(l) is the bias, n is the convolutional kernel size, and 
σ means the activation function. From the above formula, we can find that the value of a 

(1)O(l)(u, v) = �

(
m∑

i=−m

m∑

j=−m

I(l)(u + i, v + j) ⋅ K(l)(i, j) + b(l)

)
,m =

n − 1

2

Fig. 2   The framework of this study: (1) Preprocessing: rasterize the study area and integrate multisource 
geo-data, including location, population, and land use; (2) Encoder: combine CNN and GCN to extract the 
embedding vectors of the nodes, the two modules are organically connected and learned at the same time; 
(3) Decoder: the extracted embeddings of the nodes are fed into a random forest regressor to predict the 
commuting flow
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pixel in the output image actually comes from the fusion of the values of the n × n neigh-
borhood pixels in the input image.

In this study, we consider the study area as an “image”, the grids as “pixels”, and the 
multi-dimensional attributes of the grid as “channels”, then the receptive field can be 
regarded as the “buffer” in geography, so convolution allows the attributes of the grid 
neighborhood to blend into itself, thus modeling the geographical proximity effect to some 
extent. For example, for Gridi in Fig. 3, after the convolution (the grey window) from input 
(the red image) to output (the blue image), the features of its neighbors and itself are both 
taken into account. After the convolution is completed, multiple feature maps are gener-
ated, with pixels (i.e., grids, represented as multi-dimensional hidden vectors) on the fea-
ture maps as nodes, and the commuter flows between grids as edges to reconstruct the 
commuter network.

After building the commuter network, we use a two-layer GCN as a backbone to extract 
the structural properties of the network, to model the topological proximity effect. Given a 
binary adjacency matrix A and a feature matrix X, GCN can learn the embedding vectors of 
nodes through feature propagation and aggregation of local network neighbors (including 
themselves). These two steps can be described by the following formula [34]:

where H(l) denotes the hidden representation in the l-th layer, meaning the features of the 
l-hop neighbors can be leveraged, and H(0) = X, representing the original input. Â = I + A , 
where I is the identity matrix for self-connection. Because A represents the connection 
between each node and its neighbors, when A is added to I, the features of both itself and 
its neighbors are taken into account. D̂ is the degree matrix, D̂ii =

∑
jÂij , which is used 

to normalize the matrix Â . W(l) is the weight matrix to be learned of the l-th layer. σ is 
the activation function, such as RELU: σ(x) = max(0,x). GCN can map nodes to latent 

(2)H(l+1) = 𝜎

(
D̂

−
1

2 ÂD̂
−

1

2H(l)W (l)
)

Fig. 3   The fusion of neighborhood features is achieved through convolution: the red image is the input, the 
blue image is the output, and the grey window is the convolutional kernel. After convolution, the value of 
Gridi includes the features of its n × n neighbors and itself
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representation vectors, and similar nodes are also close to each other in the representation 
space.

After learning the embedding vectors of nodes, we concatenate the vectors of the 
origin/destination and design a multi-layer perceptron to map it to the flow intensity 
between them. Then, based on the predicted value f̂ij and the true value fij of flow inten-
sity, the loss is calculated and back-propagated, and the gradients are updated to train 
the parameters of the model. The loss function we select is the Mean Square Error 
(MSE), as shown in Equation 3. In training, we use the Early Stopping strategy to avoid 
overfitting, which is to retain the best-performing models and learned embeddings on 
the validation set every five epochs. Finally, the best embeddings are input into the 
decoder to predict the flow intensity.

4.3 � Decoder

Based on the learned embeddings of nodes in the encoder, we choose any two nodes 
i and j as OD (i.e., home and workplace), concatenate their embeddings with their 
distance, as input to a random forest regressor, and finally predict the commuter flow 
between i and j effectively. The decoder is formularized in (4):

where ei and ej denote the embeddings of nodes i and j, dij is the distance between them, 
and ∥ represents the concatenation operation.

(3)MSE =
1

n

∑

i,j

(
f̂ij − fij

)2

(4)f̂ij = RF
�
ei‖dij‖ej

�

Fig. 4   Study area and the distribution of commuting flows
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5 � Case study

5.1 � Datasets

In this study, we select Dongcheng District and Xicheng District of Beijing as the study 
area, as shown in Fig. 4(a). We mainly use two datasets: one is commuter flow data, and 
the other is land use data; the details of them are further described below.

The commuter flow data, that runs from January to June 2019, is provided by Amap 
(https://​www.​amap.​com/), China’s largest mobile navigation map company. The home 
and workplace locations that make up the commuter flows in this dataset are inferred 
using a machine learning method based on millions of users’ trajectory data collected 
from many smartphone apps including Alipay, Douyin, Weibo, etc. The accuracy of 
these locations is more than 90% when compared with ground truth locations of reg-
istered users, so this data product is highly reliable. Each row of the data represents a 
pair of commuter flow, including fields such as the OD grids’ ID, coordinates, and the 
corresponding number of commuters, as shown in Table 1. According to statistics, the 
resident and working population in the study area are 1,903,441 and 3,269,591, respec-
tively. To avoid the effects of random noise, we remove grid pairs with flow intensity 
less than 5 (Fig. 4(b)) and eventually form a spatial interaction network with 598 nodes 
and 49,766 edges, which is sparse obviously.

The land use vector data for China 2018 is provided by [41], and open access (http://​
data.​ess.​tsing​hua.​edu.​cn/). This dataset is generated based on multi-source geo-big data 
(such as remote sensing images, POIs, etc.) and a random forest classifier. It provides two 
levels of results, and we select Level-I, including five categories: residential, commercial, 
industrial, transportation, and public management and service, as shown in Table 2. We 
make an intersect operation between the land parcels and the divided grids using QGIS, 
count the area of each category within each grid, and divide it by the grid area for normali-
zation to form a 5-dimensional vector. This vector, as a part of the grid feature, is used to 
verify the geographical semantic relevance of commuting mentioned in Section 1.

Table 1   The field description of commuter flow data

Field Type Description

Grid id String Unique grid id (home/work).
Grid coordinates Float The coordinate of the grid’s center (home/work).
Commuter flow Int The number of commuters between two grids.

Table 2   The category information of land use data

Category Code Description

Residential 01 Buildings where people live, like houses and apartments.
Commercial 02 Buildings where people work, eat, entertain, etc.
Industrial 03 Land and buildings for manufacturing, storage, mining, etc.
Transportation 04 Roads, transportation stations, and airport facilities.
Public management and 

service
05 Land for administration, education, medical, sports, greening, etc.
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Here we provide some details of the experiment for reproduction. In the study, we ran-
domly divide the commuter flow data into training set (60%), validation set (20%), and 
test set (20%) [31, 42]. It is worth mentioning that the encoder is trained and validated on 
the first two sets, and the decoder is tested on the latter. The three main hyperparameters, 
namely, the dimension of embedding vectors, the convolution kernel size, and the number 
of GCN layers, are set to 16, 3, 2. In the encoder, we use Adam as the optimizer and set the 
learning rate to 0.001, and train the model for 200 epochs. We also adopt the early stopping 
strategy to preserve the model with the least loss on the validation set every five epochs 
and the corresponding embeddings. In the decoder, we use 10-fold cross-validation to tune 
the hyperparameters of the random forest regressor. All parts of our proposed model are 
implemented based on Sklearn and Pytorch.

5.2 � Baselines

To prove the validity of the hybrid learning model we propose, we choose the following 
baselines for comparison: (1) spatial interaction models like the gravity and radiation mod-
els; (2) machine learning models like random forest and XGBoost; (3) network-based mod-
els with Node2vec or GCN as the encoder and random forest as the decoder, without the 
convolution part.

•	 Gravity model [17]. It assumes that the commuter flow fij between two regions i and j 
is proportional to their populations pi and pj, and inversely proportional to the power of 
the distance dij. The formula is as follows, after a log-transformation, the parameters K 
and β can be estimated by linear regression.

•	 Radiation model [19]. Inspired by the intervening opportunities law and diffusion 
process [15, 26], the radiation model states that in addition to population size, flow 
intensity is influenced by the number of intervening opportunities. The formula is as 
follows, which is parameter-free and can be directly used to calculate the flow.

where Ti represents the total flow originating from i, sij represents the number of oppor-
tunities (approximated by the population here) within a circle with i as the center and 
dij as the radius (excluding the origin and destination).

•	 Random forest [43]. It is an ensemble learning method based on decision trees, where 
multiple trees are built independently and combined later to avoid overfitting and to 
improve model performance. In this study, the features of the OD are concatenated 
directly as input to predict the commuting flow.

•	 XGBoost [44]. As a gradient boosting tree model, XGBoost takes into account the 
computational efficiency while improving the model effectiveness. In many classifica-
tion and regression tasks, XGBoost can be regarded as the state-of-the-art model. In 
this study, XGBoost has the same input as random forest.

•	 Node2vec-RF [45]. Node2vec is a graph embedding method that learns the feature rep-
resentations of nodes in an unsupervised manner on graph data. Inspired by Word2vec 

(5)fij = K
pipj

d
�

ij

(6)fij = Ti

pipj(
pi + sij

)(
pi + pj + sij

)
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[46], Node2vec does random walk on a network, regards the nodes as words, the node 
sequence after walking as a sentence, to obtain the embeddings of the nodes [47], and 
the walking strategies include breadth-first sampling and depth-first sampling. In this 
study, we use Node2vec as an encoder to learn the embeddings of the nodes and then 
input them into a random forest to make predictions.

•	 GCN-RF [34]. As mentioned earlier, GCN introduces the idea of convolution into the 
graph structure data, which can fully extract the topology characteristics of the network. 
Compared with the complete model we propose in Section 4, only the convolution part 
is removed to analyze the impact of neighborhood feature fusion on the model for com-
parison.

5.3 � Evaluation metrics

We adopt three metrics to evaluate the performance of the models: Root Mean Square 
Error (RMSE), Mean Absolute Percentage Error (MAPE), and Common Part of Commut-
ers (CPC). RMSE and MAPE are common metrics of regression tasks, representing a devi-
ation from the true value, the smaller the better. CPC is a measure of the similarity between 
the predicted value and the true value in commuter flow prediction, which is between 0 and 
1, and the greater the better [14]. The formulas of these metrics are as follows:

where n represents the total number of commuter flows, fij and f̂ij represent the true and 
predicted values of the flow intensity from grid i to grid j, respectively.

5.4 � Results

The performance of the above models on the test set is shown in Table  3. Obvi-
ously, the hybrid learning model we propose (ConvGCN-RF) outperforms XGBoost 
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2
∑
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∑
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Table 3   The performance 
comparison of the models on 
the test set, including RMSE, 
MAPE, and CPC

Model RMSE MAPE CPC

Gravity model 16.064 0.751 0.707
Radiation model 19.048 0.933 0.337
Random forest 13.541 0.617 0.758
XGBoost 12.443 0.604 0.756
Node2vec-RF (ours) 11.087 0.550 0.771
GCN-RF (ours) 9.871 0.452 0.810
ConvGCN-RF (ours) 9.553 0.439 0.817
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(state-of-the-art), by 23.2%, 27.3%, and 8.1% in terms of RMSE, MAPE, and CPC, respec-
tively, thus demonstrating the effectiveness of our model. We further analyze and explain 
the possible causes of each model’s performance, as shown below.

The traditional spatial interaction models (i.e., gravity model, radiation model) have 
achieved poor performance on all metrics, and the radiation model is the worst. In our 
view, such models have fixed inputs and simple formulas, which may limit their ability to 
model complex patterns, especially for human mobility.

Machine learning models, represented by random forest and XGBoost, are significantly 
better than spatial interaction models on all indicators, in line with existing studies [21, 23, 
29]. Machine learning models do not require the introduction of prior knowledge and can 
mine nonlinear and irregular patterns directly from the data, which makes them outstand-
ing in this task.

Node2vec-RF is based on our proposed framework: the encoder is Node2vec while 
the decoder is random forest. The comparison of this model with XGBoost also proves 
that our framework is effective. In addition, Node2vec is a shallow model, so it can also 
achieve high efficiency in terms of running time as an encoder of our framework. Node-
2vec, based on a random walk, can take advantage of the topological properties of the com-
muter network, which is lacking in the machine learning models above, but does not take 
into account the features of itself and its neighbors, which is something that needs to be 
improved.

GCN-RF is also a hybrid learning model that we designed, with the encoder being con-
verted to GCN, a more efficient model in graph data mining [34]. GCN can learn the fea-
ture representations of nodes in a supervised or semi-supervised manner through propa-
gation and aggregation of the attributes of neighbors, including themselves. Supervised 
learning enables GCN to optimize model parameters by back-propagation theory, and the 
integration of neighbor characteristics enables GCN to fully capture the features of itself 
and neighbors, thus better modeling the topological proximity effect mentioned in Sec-
tion 2.3. These advantages make GCN work better as an encoder than Node2vec, as shown 
in Table 3.

ConvGCN-RF is based entirely on the hybrid learning framework, combining CNN 
and GCN as the encoder and random forest as the decoder, which performs better than 
all baselines and proves the effectiveness of our model. Convolution merges the features 
of the neighborhood grids, and to a certain extent considers the spatial spillover effect, 
which improves the model performance. The combination of CNN modeling geographical 
proximity effect and GCN modeling topological proximity effect makes the model perform 
best.

6 � Discussions

In this section, we focus on the main factors that may affect model performance, including 
the model’s hyperparameters, the flow intensity and distance, and land use data as geo-
graphic semantics.

6.1 � The effect of hyperparameters

1)	 Embedding size. This parameter determines the dimension of the embedding vectors 
extracted by our encoder. As you can see from Fig. 5(a), the higher the dimension, the 
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lower the RMSE and the higher the CPC in general, which means the model has better 
performance. This is because the higher the hidden vector dimension, the more param-
eters the model needs, and models with larger “capacity” in deep learning tend to have 
better fitting capabilities [48]. The 16-dimensional embedding is ideal for maintaining 
the model performance while taking into account the model size.

2)	 Kernel size. As mentioned in Section 4.2, the receptive field of the convolution kernel 
can be compared to the concept of “buffer” in spatial analysis, so the convolution kernel 
size determines the scope of neighborhood impacts. As shown in Fig. 5(b), when the 
kernel size is 0, it indicates that the convolution is not added, which is exactly GCN-RF 
in baselines, and its performance is not very exciting. When the kernel size is 3, the 
model performance is the best. Because the research unit is a 500m grid, the 750m buffer 
is the best distance for neighborhood effect in this task. When the kernel size becomes 
larger, the considered neighborhood also becomes wider, and the features after fusion 
tend to be averaged, so the model becomes worse, and even worse than when the kernel 
size is 0.

3)	 GCN layers. The number of GCN layers determines the depth of the network neighbor-
hood that each node leverages. As shown in Fig. 5(c), the model works best when the 
number of GCN layers is 2, i.e., when all neighbor nodes within 2-hop have an impact 
on the central node. When the number of GCN layers is too small, the model fails to 
fully capture the properties of the network neighborhood, and when it is too large, it 
takes too many nodes into account, dilutes the difference between nodes, and causes the 
problem of “over-smoothing” [49]. These factors all make the model perform worse.

Fig. 5   The effect of hyperparameters on the model

Fig. 6   The effect of flow on the model
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6.2 � The effect of flow

1)	 Flow intensity. We divide the test set into five groups by flow intensity based on the 
Jenks natural breaks [50] to compare the model’s performances on the flows of different 
intensities, as shown in Fig. 6(a). We can see that in general, with the increase of flow 
intensity, RMSE gradually increases and CPC decreases, which indicates that the model 
has a larger error in the prediction of stronger flows, and the prediction of smaller flows 
is more accurate.

2)	 Flow distance. Using the same method to group data by the flow distance (keeping a 
decimal place), we get the result of Fig. 6(b). It can be found that as the flow distance 
increases, the RMSE decreases and the CPC increases, which indicates that the model 
predicts long-distance flows better. The reason may be that long-distance flows are usu-
ally less intense due to the distance decay effect, and the model’s prediction of small-
intensity flows is more accurate (as shown in Fig. 6(a)).

6.3 � The effect of land use data

We further discuss the impact of land use data on the model, as shown in Fig. 7, where 
GCN and ConvGCN are models without land use types as inputs. The first thing we can 
see is that the addition of land use data has improved the effectiveness of both GCN 
and ConvGCN, as a result of the introduction of more supplementary information. Sec-
ondly, land use types have different improvements in the two models. For ConvGCN, 
the RMSE and CPC have a greater improvement than GCN. The reason may be that 
when there is abundant semantic information in geographical units, the influence on 
each other (especially neighborhoods) is more prominent, and convolution captures this 
neighborhood effect well, thus improving the performance of the model better. In other 
words, the rich geographical semantic information enhances the improvement on the 
model caused by the fusion of neighborhood features through convolution.

Fig. 7   The effect of landuse data 
on the models
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7 � Conclusions

Accurate prediction of commuter flow between any two places is important for transpor-
tation optimization and infrastructure configuration. However, there are inherent short-
comings in the two existing mainstream methods, such as spatial interaction models and 
machine learning models. In this paper, we propose a preprocessing-encoder-decoder 
hybrid learning model to solve the above problem: 1) in the preprocessing part, we inte-
grate multisource geo-semantic data, including location, population, and land use types; 
2) in the encoder, we combine CNN and GCN to extract the representation vectors of the 
nodes in the commuter network, thus effectively modeling geographical and topological 
proximity effects, respectively; 3) in the decoder, the learned embeddings of the nodes are 
fed into a random forest regressor to achieve accurate prediction of commuter flow, which 
has the best performance compared to all baselines.

We further discuss the main factors affecting model performance. We find that: 1) in 
terms of model hyperparameters, the higher the embedding dimension, the better the model 
performance in general, while the convolution kernel size and the number of GCN layers 
are different, too large and too small will make the prediction effect worse; 2) the model is 
more accurate in predicting flows with less intensity and greater distance; 3) finally, land 
use data, as a supplement to geographical semantics, makes the fusion of neighborhood 
features improve the model effect to a greater extent.

There are still some shortcomings in our research that need to be improved. For exam-
ple, CNN can only handle regular matrix-like inputs, and when the research unit is a traffic 
analysis zone, census tract, etc., designing a deep learning-enhanced spatial lag model or 
introducing the attention mechanism may be a solution. Besides, convolution can only take 
advantage of local attributes, without considering global information, the attention mecha-
nism can consider the similarity of geographical units both at the global and local scale, to 
better model spatial relevance. In addition to land use data, we can add more features, such 
as POIs, social media check-in texts, residents’ income, and other information to enrich 
geographic semantics.
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