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A B S T R A C T   

Improving the travel ratio of public transportation (PTR) is important for realizing low-carbon transportation and 
sustainable city development. However, limited by data resolution and model accuracy, existing research rarely 
involves the spatially refined calculation of PTR and the quantitative analysis of its influencing factors. In this 
study, based on multi-source geospatial big data, we propose a novel computational framework to solve the 
above problems. Specifically, we first design a linear programming-based three-step method, which realizes the 
calculation of PTR at 500-meter grid-pair scale for the first time; secondly, we develop a Beta-binomial model for 
regression analysis, which improves by more than 50% compared with traditional generalized linear models. The 
case of Wangjing area in Beijing shows that: the overall PTR in Wangjing is only 16%, which is much lower than 
the official expectation (45%), and less than 20% of origin–destination (OD) pairs meet the standard; among the 
influencing factors, the travel duration gap between public transportation and private cars, walking distance, 
number of transfers, and residential parking density have significant negative effects on PTR. Finally, this paper 
provides an implication of the proposed computational framework, i.e., the accurate detection of public trans
portation (PT) supply–demand imbalance areas, which proves its great potential in refined transportation 
optimization and sustainable urban planning.   

1. Introduction 

There is no doubt that public transportation plays a key role in urban 
transportation systems. In addition to meeting the travel needs of resi
dents, a well-designed public transportation (PT) system can effectively 
reduce traffic congestion, promote energy conservation and emission 
reduction, and facilitate sustainable urban development. In most coun
tries, PT is given top priority in urban transportation management 
(Currie et al., 2006; Haitao et al., 2019; Song et al., 2021). 

Among the existing PT evaluation indicators, the public trans
portation travel ratio (PTR) is an important indicator to measure the 
status of PT supply and demand, and further guide the planning of 
transit networks. PTR refers to the proportion of PT trips to the total trips 
in a certain statistical area and period. According to the travel time 
range, mode and purpose, it can be classified as one-day PTR, motorized 
PTR, commuting PTR, etc. (Ling et al., 2014). For most cities, 

commuting trips account for the highest proportion of all trips and result 
in morning and evening peaks. Improving the PTR, especially in the 
commuting context, is significant for achieving low-carbon trans
portation and sustainable cities. Since traditional methods such as 
questionnaire surveys do not provide fine-scale and comprehensive 
travel data on residential trips, most existing studies on PTR have 
adopted a city-wide scale rather than a higher spatial resolution within 
cities, and thus cannot support the refined planning and optimization of 
the transit networks. 

With the rise of technologies such as positioning, wireless commu
nication, and mobile internet, as well as the popularization of location- 
aware mobile computing devices, an unprecedented amount of geo
spatial data with individual movement information has been generated 
and stored over the years. Geospatial big data forms a true record of 
urban resident’s movements as it covers datasets such as smart card 
data, mobile signaling data, and mobile phone GPS location data (Bao 
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et al., 2021; Huang et al., 2023; Wang et al., 2022). Moreover, it has 
significant advantages over traditional residential travel surveys in 
terms of wide coverage, low acquisition cost, and high spatiotemporal 
resolution. This explains why it has been widely used in the studies of 
human mobility, jobs-housing balance, and traffic flow prediction, etc. 
(Liu et al., 2015; Wang et al., 2022; Zhao et al., 2020), leading to new 
knowledge and discoveries. This is also good news for the extraction of 
the fine-scale PTR. 

In this paper, we propose a computational framework for PTR 
calculation at a high spatial resolution based on multi-source geospatial 
big data. Taking the Wangjing area of Beijing as an example, we obtain 
PT commuting flow and total commuting flow based on smart card data 
and mobile phone location data. Since PT flow is between station pairs 
and total flow is between grid pairs, there is a problem of inconsistent 
research units. Therefore, we propose a three-step method based on 
linear programming to realize the allocation of the PT flow between 
station pairs to grid pairs (500 m). After the research units are unified, 
we calculate the ratio of PT flow to total flow, i.e., PTR. Based on this, a 
regression model called the Beta-binomial model is developed to analyze 
the influencing factors of PTR, which is more than 50% better than 
traditional models on all three goodness-of-fit indicators. Finally, this 
paper provides an implication of the proposed computational frame
work for the accurate detection of PT supply–demand imbalance areas, 
demonstrating its great potential in refined transportation optimization 
and sustainable urban planning. 

The remainder of this paper is organized as follows. Section 2 re
views recent research works on public transportation travel ratio (PTR), 
travel mode selection, and PT supply and demand analysis. Section 3 
introduces the study area and datasets. Section 4 describes the extrac
tion process of PT commuting flow and further proposes a three-step (i. 
e., “route planning”, “route matching”, and “flow assignment”) method 
for calculating the fine-scale PTR. Section 5 analyzes the results of PT 
commuting flow and PTR. Section 6 develops a regression model to 
quantitatively analyze the influencing factors of PTR and further pro
poses a strategy for discovering the areas with unbalanced PT supply and 
demand. Section 7 summarizes the research findings and suggests di
rections for future improvements. 

2. Related works 

2.1. Public transportation travel ratio 

Public transportation travel ratio (PTR) is a recent research hotspot 
because it significantly reflects the effectiveness of PT systems. Shi and 
Ju (2015) explore the effects of PT facility, land use types, individual 
socioeconomic attributes on PTR, using transportation analysis zone 
(TAZ) as the research unit. Wen et al. (2016) choose three types of 
influencing factors, i.e., travel time, ride comfortability, per capita 
occupation of road area, to forecast PTR and study its time series 
changes in Nanjing. Zhang and Wang (2018) put forward a planning 
target for Shanghai’s PTR in 2035. Xie (2018) analyzes the variation of 
PTR in seven international metropolises from 1999 to 2013, including 
Hong Kong, Tokyo, and Paris, etc. From the above, due to the lack of 
finely measured and widely covered travel data, most of the studies on 
PTR have been conducted at a city-wide scale, with a small proportion 
covering the TAZ scale. However, according to Benenson et al. (2017), in 
more than 70% of TAZs, the difference in PT accessibility between 
buildings is greater than normal, indicating internal PT supply hetero
geneity is evident even at the TAZ scale. Therefore, it is necessary to 
extract PTR at a finer scale. 

2.2. Travel mode selection 

PTR is the result of a combination of many factors when urban res
idents are making travel mode choices. Many scholars have studied the 
factors influencing travel mode selection (Bresson et al., 2003; Ding, 

2016; Outwater et al., 2011; Redman et al., 2013). In the commuting 
context, although commuters in different cities have different prefer
ences for travel modes, the common influencing factors are transit 
infrastructure factors (e.g., public transportation efficiency and parking 
convenience) and socioeconomic factors (e.g., income level and the 
number of private cars). As for the regression model of travel mode se
lection, most of the existing studies adopt the logistic regression in 
generalized linear models, while a few adopt probit regression, with a 
difference between the two being the link function (Ben-Akiva and 
Bierlaire, 1999; Ding, 2016; Outwater et al., 2011). In this paper, the 
generalized linear model with the response variable of a binomial dis
tribution is referred to as the “Binomial” regression model, which may 
exhibit an “over-dispersion” problem in use and lead to drawbacks in the 
fitting effect. 

2.3. Public transportation supply and demand analysis 

Depending on the research purposes, existing studies on PT supply 
and demand analysis have different focuses and generally adopts three 
perspectives: transit network, accessibility, and PTR. The PTR perspec
tive can be referred to in Section 2.1. 

The perspective of the transit networks focuses on measuring its 
supply capability. Chen et al. (2018) propose absolute and relative in
dicators of PT supply capability. The former is the number of bus sta
tions weighted by the vehicle capacity and departure frequency in a 
research unit; and the latter is the result of dividing the absolute indi
cator by the number of residents, taking the potential demand into ac
count. Both indicators are limited to the level of PT stations. Mishra et al. 
(2012) use the bus network as a graph and define the connectivity of bus 
stations, bus lines, and urban regions, which can measure the PT supply 
level at a single station, line, or region, but does not involve the inter
action between two stations, lines, or regions. Similarly, Wang et al. 
(2020) propose a unified analysis method for multimodal PT networks 
that can predict local travel efficiency based on its topology character
istics, but does not consider demand factors. In general, the perspective 
of transit network focuses only on the supply capacity of individual re
gions, not on the inter-regional supply capacity, and does not fully 
consider travel demand. 

As a key concept in understanding the relationship between trans
portation, land use, and human activities (de Alwis Pitts and So, 2017; 
Hansen, 1959; Mallick and Routray, 2001), accessibility is another 
perspective for analyzing the PT supply and demand. The simplest 
accessibility refers to the area or available opportunities (e.g., job, 
health care, and education) of the region that can be reached from a 
research unit by a certain travel mode within a certain period of time. On 
this basis, more complex accessibilities have been proposed in previous 
studies (Ben-Elia and Benenson, 2019; Benenson et al., 2017; Ferguson 
et al., 2013; Järv et al., 2018). Among them, Benenson et al. (2017) 
define the ratio of public transportation accessibility to private car 
accessibility as relative accessibility, but it focuses on the supply side of 
public transportation rather than the demand side. Hence, Ben-Elia and 
Benenson (2019) further consider the number of PT travelers to weight 
the difference between public transportation accessibility and private 
car accessibility to reflect the loss of accessibility for residents traveling 
by public transportation. However, accessibility can reflect the supply 
side of PT in a single study area, but fails to address interregional in
teractions, where accessibility varies widely across directions and dis
tances from the same origin to different destinations. 

3. Study area and datasets 

3.1. Study area 

This study focuses on commuters living or working in the Wangjing 
area within the Sixth Ring Road of Beijing, as shown in Fig. 1. As a 
comprehensive new area located in the northeast of central Beijing, 
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Wangjing is surrounded by four main roads: The Fourth Ring Road, the 
Fifth Ring Road, the Jingcheng Expressway, and the Capital Airport 
Expressway. It falls under the jurisdiction of Beijing’s Chaoyang District, 
with an area of 17.8 square kilometers and a resident population of ~ 
300,000 in 2010 (Bureau of Statistics of Chaoyang District, 2011). 
Wangjing has a dense concentration of companies with a large number 
of job opportunities, attracting many talents from other regions to work 
here. At the same time, it also has a large resident population, with many 
residents working outside the area. Therefore, Wangjing is considered 
an ideal case study area for commuting research. 

3.2. Datasets 

The datasets involved in this paper mainly consists of smart card data 
and total commuting flow data, provided by Amap, China’s largest 
navigation e-map company (https://www.amap.com/). 

The smart card data includes bus and subway travel records with 
card IDs, get on/off stations, etc., there are a total of 15 fields, as shown 
in Table 1, and each row represents a complete travel record. The raw 
smart card data covers a period of one month (June 2019) for the resi
dents in Beijing. After counting, it includes 36.7 million records of 1.38 
million people boarding or alighting from stations in Wangjing area. 

Total commuting flow data is also available for June 2019, provided 
by Amap company. The data product is generated by machine learning 
based on GPS location data collected from many mobile apps such as 
Alipay, Tiktok, and Weibo. The data source covers more than 700 
million users and has an accuracy rate of more than 90% for home and 
work locations compared to the ground truth of registered users, 
implying its high reliability (Yin et al., 2022). The field descriptions are 
shown in Table 2, including the anonymous user ID, longitude and 
latitude of home and workplace, and commuting time. According to 

statistics, the total number of commuters in Wangjing area is 406,394. 

4. Methodology 

This research consists of three main parts, the framework of which is 
shown in Fig. 2. The first part is the commuting flow extraction (Section 
4.1), which focuses on the extraction of PT commuting flow based on 
smart card data, since the total commuting flow is the available data. 
The second part is the PT travel ratio calculation (Section 4.2), which 
consists of three steps: “route planning”, “route matching” and “flow 
assignment”. The third part is the influencing factors analysis (Section 
6), which introduces the regression analysis process for PTR and the 
division strategy of PT supply and demand. 

4.1. PT commuting flow extraction 

PT commuting flow is extracted from smart card data through three 
steps: data preprocessing, transfer merging, and home and workplace 
inference. 

4.1.1. Data preprocessing 
Two abnormalities are excluded during the data preprocessing stage: 

(1) a total of about 5,000 records of early drop-offs; (2) excessive 
number of rides (some individuals have taken hundreds of rides, more 
than 10 per day). 

Public transportation commuters are expected to take public trans
portation at a relatively high frequency. At the same time, they should 
exhibit relatively regular travel demand on weekdays. Therefore, those 
who take public transportation at least two weekdays per week are 
screened as potential commuters. 

4.1.2. Transfer merging 
To get complete trips, the transfers in a public transportation trip 

should be merged. Three principles should be followed for transfer 
merging: (1) interchange time < 30 min and interchange distance < 500 

Fig. 1. Study area.  

Table 1 
Smart card data field information.  

Field name Type Description 

Card ID String Unique card id. 
Traffic mode String “GJ” for bus, “DT” for subway. 
Station name String The name of get on/off station. 
Line name String The name of the line where the get on/off station is 

located. 
Line direction String The direction of the line where the get on/off station is 

located: “0” or “1”. 
Station 

coordinates 
Float The longitude and latitude of get on/off station. 

Swipe time String The timestamp to get on/off, like 
“YYYYmmddHHMMSS”  

Table 2 
Total commuting flow data field information.  

Field name Type Description 

User ID String Unique anonymous user id. 
Home/workplace 

coordinates 
Float The longitude and latitude of home and 

workplace. 
Commuting time String The commuting time interval, like “HHMM- 

HHMM”, each interval is 15 min.  
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m; (2) the interchange time < the total time of two consecutive rides; (3) 
If the distance from start to endpoint after the merge < 500 m, it should 
be marked as a round trip and the merge should be canceled. 

4.1.3. Home and workplace inference 
Since this research focused on commuting context, trips before 10:00 

a.m. and after 16:00 p.m. are identified as potential commutes. For 

home extraction, the boarding point for the first trip before 10:00 a.m. 
and the drop-off point for the last trip after 16:00 p.m. are marked as 
candidates for home. For workplace extraction, the drop-off point of the 
last trip before 10:00 a.m. and the boarding point of the first trip after 
16:00 p.m. are marked as candidates for workplace. 

Based on the extracted potential candidates, the actual homes and 
workplaces can be further determined by the frequency of occurrence. 

Fig. 2. The overall research framework: (A) Commuting flow extraction; (B) PT travel ratio calculation; (C) Influencing factors analysis.  

Fig. 3. The three-step calculation algorithm of PTR at a high spatial resolution.  
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Due to the regularity of commuting behavior, the home and workplace 
stations should occur at high frequency in pairs. Therefore, for each 
traveler, trips to and from the above candidates are screened to deter
mine whether their occurrence frequency exceeds a certain threshold (4 
in this study). If the threshold is exceeded, then the traveler is a 
commuter, the route is a commuting route, and the boarding and 
alighting points of the route are the corresponding actual home and 
work locations. Otherwise, the traveler is not a commuter. 

4.2. PT travel ratio calculation 

The PTR refers to the ratio of PT commuting flow in total commuting 
flow. To obtain PTR at a high spatial resolution (500 m grid), PT 
commuting flow between stations should be assigned to the home-work 
grid pairs. If the solution objective is given (e.g., the minimal total travel 
time or cost), the allocation of PT commuting flow to grid pairs can be 
realized through linear programming. On the one hand, linear pro
gramming is a simple but efficient optimization algorithm that has been 
used in many fields (Cormen et al., 2022; Gass, 2003; Schrijver, 1998), 
and on the other hand, the algorithm is also perfectly suited for the 
optimization task, i.e., the optimization objective and constraints are 
linear. The three-step calculation process of PTR at a high spatial reso
lution is shown in Algorithm 1 (Fig. 3). 

4.2.1. Route planning 
First, the grid pairs of total commuting flow are used as potential 

sources of home-workplaces of PT commuting flow, and route planning 

is performed for the aforementioned grid pairs to obtain their PT 
candidate routes. In this study, two PT routes with the same get on/off 
stations are considered the same regardless of the specific travel process 
in the trip. The Amap API (https://lbs.amap.com/) is adopted for route 
planning. As mentioned above, the study area is divided into 500 m ×
500 m grids, and the home-workplace pair belonging to the same grid 
pair are considered to have the same PT routes as the grid center. Since 
there may be multiple PT routes between a home-workplace pair, the 
top three routes with the shortest travel time are first selected as can
didates in route planning. Also, to exclude the excessively slow routes, 
those routes that are longer than the fastest route by more than 15 min 
are removed from the set of candidate routes, and the remaining ones 
are used as candidate routes between home and workplaces. 

The total number of commuters is denoted as N, and the GridPair =

{GP1,GP2,⋯,GPG}, where G is the total number of grid pairs. The jth grid 
pair GPj = {(gpo

j , gpd
j , total flowj)|1 ≤ j ≤ G}, where gpo

j , gpd
j and 

total flowj respectively represent the origin, destination, and total flow 
between it, and 

∑G
j total flowj = N. The planned routes between the grid 

pairs after route planning is denoted as Route = {r1, r2,⋯, rG}, where G 
is the total number of grid pairs. The planned routes of the jth grid pair 
rj = {rjk(ro

jk,r
d
jk)|1 ≤ k ≤ 3,1 ≤ j ≤ G}, where ro

jk and rd
jk represent the get 

on/off stations of the planned routes, respectively. There are at most 
three routes in the set for each grid pair. 

4.2.2. Route matching 
Second, the planned routes are then matched with the PT commuting 

routes (extracted in Section 4.1) to get the potential source grid pairs of 

Fig. 4. Matching the planned routes with the PT commuting routes.  
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the PT commuting flow. The sum of PT commuting flow is denoted as M, 
and the PT routes PublicTransport = {PT1,PT2,⋯,PTH}, where H is the 
total number of PT routes. The ith PT route PTi =
{(

pto
i , ptd

i , pt flow stai)|1 ≤ i ≤ H
}
, where pto

i , ptd
i , and pt flow stai 

respectively represent the get-on station, get-off station, and PT flow on 
the route, and 

∑H
i pt flow stai = M. As stated above, since two PT routes 

with the same get on/off stations are considered the same, the matching 
of the planned routes to the PT routes only involves a comparison be

tween 
(

ro
jk, r

d
jk

)
and (pto

i ,ptd
i ). 

Taking Fig. 4 as an example, the grid pair GP1 has two planned 
routes: r11 and r12, and the grid pair GP2 has three planned routes: r21, 
r22, and r23. Since 

(
ro
11, rd

11
)
= (pto

1,ptd
1), 

(
ro
12, rd

12
)
= (pto

2,ptd
2), 

(
ro
21, rd

21
)
=

(pto
2, ptd

2), 
(
ro
22, rd

22
)
= (pto

3, ptd
3), and 

(
ro
23, rd

23
)
= (pto

4, ptd
4), so r11 is 

matched with PT1, r12 and r21 are both matched with PT2, r22 is matched 
with PT3, and r23 is matched with PT4, respectively. Thus, the flow on 
PT1 is from GP1, the flow on PT2 may come from both GP1 and GP2, and 
the flows on PT3 and PT4 are both from GP2. 

4.2.3. Flow assignment 
Third, linear programming is then adopted to assign the PT 

commuting flow to the potential source grid pairs and calculate the PTR. 
The PT flow assigned by the ith PT route to the jth grid pair is denoted as 
ptij. In Fig. 4, pt11 = pt1, pt12 = 0, pt31 = 0, pt32 = pt3, pt41 = 0, and 
pt42 = pt4. Since the flow on PT2 may come from both GP1 and GP2, 
then pt21 + pt22 = pt2, and the grid pairs should not be assigned with PT 
flow that exceeds their total flow (denoted as gpj for the jth grid pair), i.e., 
∑4

i ptij ≤ gpj, where 1 ≤ j ≤ 2. The values of pt21 and pt22 are not unique 
under the above constraints. For the PT flow allocation, this study as
sumes that individuals always choose the fastest route to travel. This 
way, the allocation of the PT flow is transformed into a linear pro
gramming problem to minimize the overall travel time under the con
straints of the total flow and PT flow between grid pairs, as shown by the 
following mathematical expressions: 

min
∑H

i

∑G

j
durationij*ptij (1)  

s.t.
∑G

j
ptij = pt flow stai (2)  

∑H

i
ptij ≤ total flowj (3)  

durationij =

{
The travel time of rjk, if PTi matches the planned route rjk of GPj

+∞, if PTi does not match any planned routes of GPj

(4)  

ptij ∈
[
0,min

(
pt flow stai, total flowj

) ]
, and is an integer. (5) 

Then, ptij is obtained through linear programming to obtain the PT 
flow pt flow gridj =

∑H
i ptij allocated on the grid pair GPj. So far, we have 

obtained PT flow and total flow between grid pairs, that is, the research 
units are unified. By definition, the PTR can be calculated as follows: 

pt ratioj =
pt flow gridj

total flowj
(6)  

5. Results 

5.1. PT commuting flow 

According to the extracted results, 70,415 commuters living or 
working in Wangjing choose public transportation, including 12,529 
home-work station-pairs. In terms of the commuting distance (straight- 
line distance), 51% of commuters are in the [0, 10 km) range, 43% are in 
the [10 km, 20 km) range, and 6% are in the [20 km, 44 km) range, 

indicating that the commuting distance is mostly within 20 km. In 
addition, the longest distance is from outside Wangjing to the inside 
Wangjing (43 km). And 55 commuters have a commuting distance of 
500 m or less, indicating that some commuters still prefer public 
transportation even for short-distance commutes. 

In terms of the commuting time, due to the pre-screening of card 
swiping time, the on-duty and off-duty hours are respectively distributed 
between 0:00 a.m. − 10:00 a.m. and 16:00 p.m. − 24:00 p.m., as shown 
in Fig. 5 (b). It can be seen that the on-duty hours are more concentrated 
than the off-duty hours. The largest on-duty travel volume occurs be
tween 8:00 a.m. and 9:00 a.m., accounting for 42%, while the largest off- 
duty travel volume occurs between 18:00 p.m. and 19:00 p.m., ac
counting for 31%, and the evening peak lasts for 4 hours between 17:00 
p.m. and 21:00 p.m. As for the spatial distribution of the commuting 
routes, 73 hot commuting routes carry more than 100 passengers, of 
which 67 are subway routes and 6 are regular bus routes, as shown in 
Fig. 5 (c). This indicates that subway has become the most important 
travel mode for commuters in Wangjing area, especially lines 5, 8, 13, 
14, and 15 carry a large number of commuters. 

5.2. Travel ratio of public transportation (PTR) 

After excluding the commuters assigned to the outside grids at the 
stations near the Wangjing border, the PT commuters living or working 
in Wangjing dropped from 70,415 to 65,217. Since the total commuting 
flow is 406,394, the overall PTR in Wangjing is 65,217/406,394 =
16.0%. In 2011, the Ministry of Transport of China states that the PTR 
(excluding walking) of the “transit city” demonstration cities with rail 
transit should reach at least 45% (Ministry of Transport of China, 2011), 
suggesting that Wangjing’s PTR is still far below expectations. More
over, we believe that the calculation results are reliable: on the one 
hand, it comes from the accuracy and coverage of the original data, with 
the validated accuracy of Amap positioning data exceeding 90% (Yin 
et al., 2022), and the smart card data covering a whole month of PT 
travel records of Beijing residents; on the other hand, the uncertainty of 
the results mainly comes from the linear programming in the flow 
assignment, although the minimum travel time as the optimization goal 
is not always realistic but still reasonable (Ahn and Rakha, 2008; Lev
inson and Zhu, 2013; Manley et al., 2015; Zhu et al., 2021), and its error 
is still generally controllable and does not affect the feasibility of the 
entire computational framework. Another uncertainty may arise from 
the so-called Braess’s Paradox and Price of Anarchy (Roughgarden, 
2005), namely the contradiction between individual optimality and 
global optimality, which may lead to problems with the assumption of 
linear programming that remains to be further explored. In 2020, the 
annual report released by the Beijing Transport Research Center states 
that the PTR in Beijing in 2019 is 31.8% (16.5% for subway and 15.3% 
for bus), but this value is for the whole of Beijing on the one hand, and 
for all trips on the other (Beijing Transport Research Center, 2020). Our 
study object is the PTR in commuting context in the Wangjing area, 
which may be the reason for the inconsistent results. In addition, the 
fine-scale PTR calculation results differ significantly from the city-scale 
results, indicating that the existing coarse-grained statistics may be 
overly optimistic in estimating urban transportation conditions, which 
also proves the importance of calculating PTR at high resolution. 

For different travel directions, the number of PT commuters in 
Wangjing area from outside-to-inside, from inside-to-outside, and from 
inside-to-inside are 44,246, 17,219, and 3,752, respectively. In addition, 
the total number of commuters is 254,397, 110,766, and 41,231, with 
PTRs of 17.4%, 15.5%, and 9.1%, respectively. It can be seen that the 
outside-to-inside PTR is the highest, and the PTR from inside-to-inside is 
the lowest. After statistics, the average commuting distance from 
outside-to-inside, inside-to-outside and inside-to-inside is 11.3 km, 8.2 
km and 1.8 km respectively, and we can tentatively conclude that the 
longer the commuting distance is, the larger the PTR is. Fig. 6 (b) shows 
the frequency distribution of the PTR results for all grid-pairs. Taking the 
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mean value (16%) and the official expectation (45%) as the benchmark, 
we can see that a large percentage of PTR (about 69.4%) is below the 
mean value, and less than 20% of the grid pairs meet the expectation, 
which indicates that more work needs to be done to improve the usage of 
public transportation in Wangjing area. Fig. 6 (c) shows the spatial 
distribution of PTR, and the OD pairs shows a relatively obvious direc
tionality in general, with long-distance trips tending to have a larger 
PTR, which is roughly consistent with the previous conclusion. 

6. Discussion 

6.1. Influencing factors analysis of PTR 

PTR is the ratio of PT flow to total flow between an OD pair, 

reflecting the willingness of urban residents to choose public trans
portation. Therefore, it is necessary to quantify the influencing factors of 
PTR, which on the one hand can help to enhance our understanding of 
human travel behavior, and on the other hand can guide transportation 
management and urban planning in a targeted manner. 

For influencing factors, the following characteristics reflecting travel 
efficiency and socio-economic features are selected for regression 
analysis. These characteristics include: the travel time difference be
tween public transportation and private cars (transit gap), walking 
distance, number of transfers, travel distance, parking density in home 
and workplace, and housing price, as shown in Table 3. 

For the regression models, PTR can also be considered as the prob
ability that a traveler chooses public transportation according to its 
definition, which depends on the influencing factors mentioned above. 

Fig. 5. Temporal and spatial distribution of the PT commuting flow: (a) study area, (b) temporal distribution, (c) hot commuting routes with flow intensity greater 
than 100. 

Fig. 6. The calculation results of PTR: (a) study area, (b) frequency histogram, (c) spatial distribution.  
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Assume that the total flow in a grid pair i is ni, the travelers between it 
have the same probability of choosing public transportation, which is 
denoted as pi. Therefore, pi can be regarded as the PTR of the grid pair i. 
If the travelers are independent of each other, then the PT flow Yi obeys 
binomial distribution: Yi ∼ Binomial(ni, pi). Most studies on PTR have 
adopted the Binomial regression model, i.e., a generalized linear model 
with a response variable in a binomial distribution (McCullagh and 
Nelder, 2019; Shi and Ju, 2015; Wen et al., 2016; Xie, 2018). However, 
binomial models may suffer from excessive residuals, which are referred 
to as “over-dispersion”. Over-dispersion increases fitting error, but is 
often seen in practical applications (McCullagh and Nelder, 2019). In 
this study, the reason may be that there is a strong correlation between 
travelers in the same OD grid-pairs, which undermines the indepen
dence assumption. Nested models have proven to be effective in miti
gating the problem of over-dispersion. The parameter pi is taken as a 
random variable, and obeys beta-distribution most frequently, thus 
constructing the Beta-binomial model (Chatfield and Goodhardt, 1970; 
Gange et al., 1996; McCullagh and Nelder, 2019; Williams, 1975). De
tails of the mathematical derivation, regression process and result 
comparison of the regression models are described in the Supplementary 
Material. Compared with M1 (the Binomial model), M3 (the Beta- 
binomial model) is reduced by 52.5%, 52.4% and 52.3% on all three 
indicators, which proves the necessity of considering the Beta prior 
distribution (Table S1 in Supplementary Material). The mathematical 
expression for the optimal model M3 is as follows: 

log
pi

1 − pi
= XT β⇒pi =

1
1 + exp

(
− XT β

)

=
1

1 + exp
(
− β0 −

∑

i=1,2,4,5
βixi − β3x3x4 − β6x1x4

)

(7)  

Where x1 is the transit gap, x2 is the walking distance, x3 is the number 
of transfers, x4 is the travel distance, and x5 is the residential parking 
density. Transit gap is measured in hours, walking distance and travel 
distance in kilometers, and the residential parking density in 1/2.25 
square kilometers. And the regression coefficients are shown in Table 4. 

As shown in Table 4, transit gap, walking distance, number of 

transfers, and residential parking density are negatively correlated with 
PTR, which is consistent with our common knowledge. The interaction 
term’s coefficient between the travel distance and number of transfers is 
negative, indicating that with the increase in the travel distance, more 
transfers lead to a greater decline in PTR. In contrast, the interaction 
term’s coefficient between the travel distance and transit gap is positive, 
indicating that with increase in travel distance, a smaller decline in PTR 
happens caused by the increase in the unit time of the transit gap. This is 
not surprising because people prefer public transportation if they are 
commuting long distances, as the proportion of the transit gap decreases 
as the total travel time increases. The relationship between the travel 
distance and PTR is influenced by the number of transfers and the transit 
gap. Assuming that the transit gap is 0, if the number of transfers is no 
more than 2, then the coefficient of the travel distance is positive. 
Otherwise, the coefficient is negative. Therefore, the travel distance 
essentially does not have a positive or negative correlation with PTR. 

6.2. Potential implication: Finding the areas with unbalanced PT supply 
and demand 

Areas with imbalance between PT supply and demand can be 
determined on a combination of PTR and the transit gap. PTR represents 
the willingness of residents to choose public transportation between grid 
pairs. This study adopts a threshold value of 0.45. The transit gap re
flects the relative travel efficiency of public transportation by indirectly 
considering the walking distance and number of transfers. In this study, 
20 min is used as the cutoff for high and low travel efficiency, meaning 
that if the transit gap exceeds 20 min, the PT system is considered to be 
in an inefficient state, and vice versa. 

First of all, as implied in Table 4, PTR is negatively correlated with 
the transit gap. At the same time, there are situations where PTR is high 
when the transit gap is large and PTR is low when the transit gap is 
small, and these are exactly the situations in the areas with imbalanced 
supply and demand. As shown in Fig. 7, the red dots indicate the large 
transit gap and high PTR, suggesting that commuters within these grid 
pairs significantly depend on public transportation, despite its in
efficiency. High PTR and low travel efficiency imply a severe short 
supply. The yellow dots represent the ideal state, where both PTR and 
travel efficiency are high. The blue dots represent the high efficiency and 
low PTR, possibly due to the low willingness of commuters to take public 
transportation, suggesting a potential oversupply. The gray dots repre
sent the low travel efficiency and PTR, where an increase in travel ef
ficiency may increase PTR, implying a potential short supply. Overall, 
115 grid pairs are in severe short supply, 968 are in ideal state, 117 are 
in potential oversupply, and 2,648 are in potential short supply. 

As the key area for optimization, the areas in severe short supply are 
visualized for further study. To simplify, O(rigin) is preserved for grid 
pairs from outside-to-inside of Wangjing, and D(estination) is preserved 
for grid pairs from inside-to-outside, and the visualization results are 
shown in Fig. 8. The blue grids represent the O points from outside to 
inside Wangjing, i.e., the home grids, with 55 points. The orange grids 
represent the D points from inside to outside Wangjing, i.e., the work
place grids, with 16 points. The black grids represent the grids of com
muters working in Wangjing and coming from Wangjing to work, 
including the grids where both of the above cases exist at the same time, 
with two grids. 

Considering the causes of the transit gap and the flow intensity 
(Table 5), shuttle buses should be added, or the “subway + bus” lines 
should be customized to alleviate the supply shortage. Based on spatial 
proximity and directional consistency, some areas have been combined 
(the merged cells in Table 5): Shahe Higher Education Park - Shahe, 
Xierqi - Qinghe, Lishuiqiao - Beiyuan, Dongzhoujiayuan - Naizifang 
Village, Loutai Village - Sakura Garden, and Sanyuanqiao – Dongzhi
men. The un-asterisked cells indicate that the PT flow in these areas is 
greater than 30. It is recommended to open direct shuttle buses to 
Wangjing in these areas. The cells whose IDs are marked with an asterisk 

Table 3 
Influencing factors of PTR.  

Influencing 
factors 

Definition Reflect 

Transit gap The travel time difference between 
PT and private cars. 

The relative travel 
efficiency of PT. 

Walking distance The total walking distance when 
traveling by PT, including “first/last 
mile” and transfers. 

Travel 
characteristics. 

Number of 
transfers 

The number of transfers when 
traveling by PT. 

Travel 
characteristics. 

Travel distance The road network distance between 
home and workplace. 

Travel 
characteristics. 

Workplace 
parking density 

The number of parking lots in the 1.5 
km square buffer of the workplace. 

Parking convenience. 

Residential 
parking density 

The number of parking lots in the 1.5 
km square buffer of the home. 

Private car 
ownership. 

Housing price The average housing price of the 
residential community. 

Resident income 
level.  

Table 4 
The regression coefficients of explanatory variables.  

Explanatory variable Coefficient 

Transit gap  − 6.52 
Walking distance  − 1.57 
Travel distance  0.09 
Residential parking density  − 0.001 
Travel distance * number of transfers  − 0.04 
Travel distance * transit gap  0.13  
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Fig. 7. The division result of public transportation supply and demand.  

Fig. 8. Areas in severe short supply. The blue grids represent homes; the orange grids represent workplaces; the black grids represent both. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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represent flow not exceeding 30. Buses can be added to connect to the 
subway stations or shuttle buses can be added in conjunction with the 
flow in surrounding areas. 

7. Conclusion 

In this paper, a novel computational framework is proposed for 
calculating PTR in high resolution and quantifying its influencing fac
tors. First, PT commuting flow and total commuting flow can be ob
tained based on multisource geospatial big data. Then, we propose a 
linear programming-based three-step method to assign PT flow between 
stations to grids, which realizes the calculation of PTR between grid 
pairs (500 m) for the first time. Besides, we develop a Beta-binomial 
model to address the over-dispersion problem in existing studies, and 
quantitatively analyze the impact of various travel efficiency and socio- 
economic characteristics on PTR. Finally, we provide a new strategy to 
evaluate the PT supply–demand status, and give some feasible sugges
tions to inspire the transit optimization in Wangjing. 

Nevertheless, this study also has some limitations. For example, in 
calculating PTR, the PT flow is allocated through linear programming to 
seek the minimum total travel time, which may differ from the realistic 
travel behaviors of passengers. The population distribution of each grid 
cell also plays a role in the flow allocation, and should be considered. 
Travel questionnaires can be conducted in some areas to validate the 
calculation results of PTR and more cities can be used as case studies to 
test the robustness of the proposed approach. Also, additional influ
encing factors, such as the per capita income of residents and the degree 
of traffic congestion, can be included in the regression analysis for 
further exploration. 
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Gange, S.J., Muñoz, A., Sáez, M., Alonso, J., 1996. Use of the Beta-Binomial Distribution 
to Model the Effect of Policy Changes on Appropriateness of Hospital Stays. J. R. 
Stat. Soc. Ser. C (Applied. Stat. 45, 371–382. https://doi.org/10.2307/2986094. 

Gass, S., 2003. Linear programming: methods and applications. 
Haitao, H., Yang, K., Liang, H., Menendez, M., Guler, S.I., 2019. Providing public 

transport priority in the perimeter of urban networks: A bimodal strategy. Transp. 
Res. Part C Emerg. Technol. 107, 171–192. https://doi.org/10.1016/J. 
TRC.2019.08.004. 

Hansen, W.G., 1959. How Accessibility Shapes Land Use. J. Am. Inst. Plann. 25, 73–76. 
https://doi.org/10.1080/01944365908978307. 

Huang, Z., Yin, G., Peng, X., Zhou, X., Dong, Q., 2023. Quantifying the environmental 
characteristics influencing the attractiveness of commercial agglomerations with big 
geo-data. Environ. Plan. B Urban Anal. City Sci., 239980832311583 https://doi.org/ 
10.1177/23998083231158370. 

Järv, O., Tenkanen, H., Salonen, M., Ahas, R., Toivonen, T., 2018. Dynamic cities: 
Location-based accessibility modelling as a function of time. Appl. Geogr. 95, 
101–110. https://doi.org/10.1016/J.APGEOG.2018.04.009. 

Levinson, D., Zhu, S., 2013. A portfolio theory of route choice. Transp. Res. Part C Emerg. 
Technol. 35, 232–243. https://doi.org/10.1016/J.TRC.2013.03.001. 

Ling, X., Yang, T., Shi, Q., 2014. Discussion on Public Transit Mode Share(in Chinese). 
Urban Transp. China 12, 26–33. 

Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G., Shi, L., 2015. Social Sensing: A 
New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. 
Geogr. 105, 512–530. https://doi.org/10.1080/00045608.2015.1018773. 

Mallick, R.K., Routray, J.K., 2001. Identification and accessibility analysis of rural 
service centers in Kendrapara District, Orissa, India: a GIS-based application. Int. J. 
Appl. Earth Obs. Geoinf. 3, 99–105. https://doi.org/10.1016/S0303-2434(01) 
85027-3. 

Manley, E.J., Addison, J.D., Cheng, T., 2015. Shortest path or anchor-based route choice: 
a large-scale empirical analysis of minicab routing in London. J. Transp. Geogr. 43, 
123–139. https://doi.org/10.1016/J.JTRANGEO.2015.01.006. 

McCullagh, P., Nelder, J.A., 2019. Generalized Linear Models, 2nd Editio. ed. Routledge, 
New York. https://doi.org/10.1201/9780203753736. 

Ministry of Transport of China, 2011. Notice on Issues Concerning the Development of 
the National Public Transport City Construction Demonstration Project (in Chinese). 

Mishra, S., Welch, T.F., Jha, M.K., 2012. Performance indicators for public transit 
connectivity in multi-modal transportation networks. Transp. Res. Part A Policy 
Pract. 46, 1066–1085. https://doi.org/10.1016/J.TRA.2012.04.006. 

Outwater, M.L., Spitz, G., Lobb, J., Campbell, M., Sana, B., Pendyala, R., Woodford, W., 
2011. Characteristics of premium transit services that affect mode choice. 
Transportation (Amst). 38, 605–623. https://doi.org/10.1007/S11116-011-9334-0. 

Redman, L., Friman, M., Gärling, T., Hartig, T., 2013. Quality attributes of public 
transport that attract car users: A research review. Transp. Policy 25, 119–127. 
https://doi.org/10.1016/J.TRANPOL.2012.11.005. 

Roughgarden, T., 2005. Selfish routing and the price of anarchy. 
Schrijver, A., 1998. Theory of linear and integer programming. 
Shi, F., Ju, Y., 2015. Analysis on influencing factors of public transportation share: An 

empirical study of central Nanjing(in Chinese). City Plan. Rev. 76–84. 
Song, Y., Wu, P., Hampson, K., Anumba, C., 2021. Assessing block-level sustainable 

transport infrastructure development using a spatial trade-off relation model. Int. J. 
Appl. Earth Obs. Geoinf. 105, 102585. https://doi.org/10.1016/J. 
JAG.2021.102585. 

Wang, H., Huang, Z., Zhou, X., Yin, G., Bao, Y., Zhang, Y., 2022. DouFu: A double fusion 
joint learning method for driving trajectory representation. Knowledge-Based Syst 
258. https://doi.org/10.1016/j.knosys.2022.110035. 

Wang, Y., Zhu, D., Yin, G., Huang, Z., Liu, Y., 2020. A unified spatial multigraph analysis 
for public transport performance. Sci. Rep. 10 https://doi.org/10.1038/s41598-020- 
65175-x. 

Wang, Y., Huang, Z., Yin, G., Li, H., Yang, L., Su, Y., Liu, Y., Shan, X., 2022. Applying 
Ollivier-Ricci curvature to indicate the mismatch of travel demand and supply in 
urban transit network. Int. J. Appl. Earth Obs. Geoinf. 106, 102666. https://doi.org/ 
10.1016/J.JAG.2021.102666. 

Wen, X., Zhang, Z., Yang, T., 2016. Research on public transportation share rate 
calculation model construction and empirical(in Chinese). J. Chongqing Jiaotong 
Univ. Sci. 35, 127–132. 

Williams, D.A., 1975. 394: The Analysis of Binary Responses from Toxicological 
Experiments Involving Reproduction and Teratogenicity. Biometrics 31, 949. 
https://doi.org/10.2307/2529820. 

Xie, C., 2018. Research on the travel effect of international metropolitan transportation 
infrastructure construction (in Chinese). Shanghai Academy of Social Sciences. 

Yin, G., Huang, Z., Bao, Y., Wang, H., Li, L., Ma, X., Zhang, Y., 2022. ConvGCN-RF: A 
hybrid learning model for commuting flow prediction considering geographical 
semantics and neighborhood effects. Geoinformatica 1–21. https://doi.org/ 
10.1007/s10707-022-00467-0. 

Zhang, T., Wang, B., 2018. Research on public traffic share ratio of Shanghai transport in 
2035 (in Chinese). Commun. Shipp. 5, 42–49. 

Zhao, N., Cao, G., Zhang, W., Samson, E.L., Chen, Y., 2020. Remote sensing and social 
sensing for socioeconomic systems: A comparison study between nighttime lights 
and location-based social media at the 500 m spatial resolution. Int. J. Appl. Earth 
Obs. Geoinf. 87, 102058. https://doi.org/10.1016/J.JAG.2020.102058. 

Zhu, Z., Mardan, A., Zhu, S., Yang, H., 2021. Capturing the interaction between travel 
time reliability and route choice behavior based on the generalized Bayesian traffic 
model. Transp. Res. Part B Methodol. 143, 48–64. https://doi.org/10.1016/J. 
TRB.2020.11.005. 

G. Yin et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/S0965-8564(03)00009-0
https://doi.org/10.1016/S0965-8564(03)00009-0
https://doi.org/10.2307/2346328
https://doi.org/10.2307/2346328
https://doi.org/10.1016/J.JCLEPRO.2018.06.021
https://doi.org/10.1016/J.JAG.2016.12.004
https://doi.org/10.1016/J.JAG.2016.12.004
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0065
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0065
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0070
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0070
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0070
https://doi.org/10.2307/2986094
https://doi.org/10.1016/J.TRC.2019.08.004
https://doi.org/10.1016/J.TRC.2019.08.004
https://doi.org/10.1080/01944365908978307
https://doi.org/10.1177/23998083231158370
https://doi.org/10.1177/23998083231158370
https://doi.org/10.1016/J.APGEOG.2018.04.009
https://doi.org/10.1016/J.TRC.2013.03.001
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0105
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0105
https://doi.org/10.1080/00045608.2015.1018773
https://doi.org/10.1016/S0303-2434(01)85027-3
https://doi.org/10.1016/S0303-2434(01)85027-3
https://doi.org/10.1016/J.JTRANGEO.2015.01.006
https://doi.org/10.1016/J.TRA.2012.04.006
https://doi.org/10.1007/S11116-011-9334-0
https://doi.org/10.1016/J.TRANPOL.2012.11.005
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0160
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0160
https://doi.org/10.1016/J.JAG.2021.102585
https://doi.org/10.1016/J.JAG.2021.102585
https://doi.org/10.1016/j.knosys.2022.110035
https://doi.org/10.1038/s41598-020-65175-x
https://doi.org/10.1038/s41598-020-65175-x
https://doi.org/10.1016/J.JAG.2021.102666
https://doi.org/10.1016/J.JAG.2021.102666
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0180
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0180
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0180
https://doi.org/10.2307/2529820
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0190
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0190
https://doi.org/10.1007/s10707-022-00467-0
https://doi.org/10.1007/s10707-022-00467-0
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0200
http://refhub.elsevier.com/S1569-8432(23)00067-5/h0200
https://doi.org/10.1016/J.JAG.2020.102058
https://doi.org/10.1016/J.TRB.2020.11.005
https://doi.org/10.1016/J.TRB.2020.11.005

	How to quantify the travel ratio of urban public transport at a high spatial resolution? A novel computational framework wi ...
	1 Introduction
	2 Related works
	2.1 Public transportation travel ratio
	2.2 Travel mode selection
	2.3 Public transportation supply and demand analysis

	3 Study area and datasets
	3.1 Study area
	3.2 Datasets

	4 Methodology
	4.1 PT commuting flow extraction
	4.1.1 Data preprocessing
	4.1.2 Transfer merging
	4.1.3 Home and workplace inference

	4.2 PT travel ratio calculation
	4.2.1 Route planning
	4.2.2 Route matching
	4.2.3 Flow assignment


	5 Results
	5.1 PT commuting flow
	5.2 Travel ratio of public transportation (PTR)

	6 Discussion
	6.1 Influencing factors analysis of PTR
	6.2 Potential implication: Finding the areas with unbalanced PT supply and demand

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


